Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905672

RESUMO

The well-known antimicrobial effects of chitosan (CS) polymers make them a promising adjuvant in enhancing antibiotic effectiveness against human pathogens. However, molecular CS antimicrobial mechanisms remain unclear, despite the insights presented in the literature. Thus, the aim of the present study was to depict the molecular effects implicated in the interaction of low or medium molecular mass CS polymers and their nanoparticle-counterparts against Escherichia coli. The differential E. coli proteomes sensitized to either CS polymers or nanoparticles were investigated by nano liquid chromatography-mass spectrometry (micro-LC-MS/MS). A total of 127 proteins differentially expressed in CS-sensitized bacteria were predominantly involved in (i) structural functions associated to the stability of outer membrane, (ii) increment of protein biosynthesis due to high abundance of ribosomal proteins and (iii) activation of biosynthesis of amino acid and purine metabolism pathways. Antibacterial activity of CS polymers/nanoparticles seems to be triggered by the outer bacterial membrane disassembly, leading to increased protein biosynthesis by diverting the metabolic flux to amino acid and purine nucleotides supply. Understanding CS-antibacterial molecular effects can be valuable to optimize the use of CS-based nanomaterials in food decontamination, and may represent a breakthrough on CS nanocapsules-drug delivery devices for novel antibiotics, as the chitosan-disassembly of bacteria cell membranes can potentialize antibiotic effects.


Assuntos
Antibacterianos/farmacologia , Quitosana/análogos & derivados , Nanopartículas/química , Proteoma/metabolismo , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Quitosana/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteoma/genética
2.
Biochim Biophys Acta ; 1834(6): 1010-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23228929

RESUMO

Several human neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Familial Amyloidotic Polyneuropathy, have long been associated with, structural and functional changes in disease related proteins leading to aggregation into amyloid fibrils. Such changes can be triggered by post-translational modifications. Methylglyoxal modifications have been shown to induce the formation of small and stable native-like aggregates in the case of the amyloidogenic proteins insulin and α-synuclein. However, the fundamental biophysical mechanism underlying such methylglyoxal-induced protein aggregation is not yet fully understood. In this work cytochrome c (Cyt c) was used as a model protein for the characterization of specific glycation targets and to study their impact on protein structure, stability, and ability to form native-like aggregates. Our results show that methylglyoxal covalently modifies Cyt c at a single residue and induces early conformational changes that lead to the formation of native-like aggregates. Furthermore, partially unfolded species are formed, but do not seem to be implicated in the aggregation process. This shows a clear difference from the amyloid fibril mechanisms which involve partially or totally unfolded intermediates. Equilibrium-unfolding experiments show that glycation strongly decreases Cyt c conformational stability, which is balanced with an increase of conformational stability upon aggregation. Data collected from analytical and spectroscopic techniques, along with kinetic analysis based on least-squares parameter fitting and statistical model discrimination are used to help to understand the driving force underlying glycation-induced native-like aggregation, and enable the proposal of a comprehensive thermodynamic and kinetic model for native-like aggregation of methylglyoxal glycated Cyt c.


Assuntos
Amiloide/metabolismo , Citocromos c/metabolismo , Glicosilação , Aldeído Pirúvico/metabolismo , Sequência de Aminoácidos , Animais , Cavalos , Cinética , Lipídeos de Membrana/metabolismo , Conformação Proteica , Dobramento de Proteína , Termodinâmica
3.
J Sci Food Agric ; 93(7): 1779-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23197375

RESUMO

BACKGROUND: Shellfish farming is an important economic activity that provides society with a valuable source of food. Analyses of the protein content and metabolism of shellfish are therefore of utmost importance to monitor the presence and effects of environmental contaminants in these organisms and also to assess food quality and authenticity. The aim of the present study was to compare different protein extraction protocols commonly used in two-dimensional gel electrophoresis (2DE) research and select the most suitable for the analysis of gill and digestive gland proteomes from the marine mussel Mytilus galloprovincialis. RESULTS: High-resolution protein separation was achieved by direct solubilisation of proteins from M. galloprovincialis tissues with urea (7 mol L(-1)), thiourea (2 mol L(-1)), CHAPS (40 g L(-1)), DTT (65 mmol L(-1)) and ampholytes (pH 4-7, 8 mL L(-1)). Subsequent protein identification from 2DE gels by MALDI-TOF/TOF mass spectrometry revealed a high number of proteins with functions in cytoskeleton structure, dynamics and maintenance. Other proteins identified in the 2DE gels are involved in energy production and carbohydrate metabolism, metal transport, chaperones and stress response, cell signalling and regulation, proteolysis and protein transduction. CONCLUSION: Important protein markers for contaminant and quality assessment of shellfish food products can be analysed using 2DE.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Inocuidade dos Alimentos , Mytilus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Frutos do Mar , Animais , Biomarcadores/metabolismo , Soluções Tampão , Ácidos Cólicos , Citoesqueleto/metabolismo , Dieta , Ditiotreitol , Contaminação de Alimentos , Brânquias/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Tioureia , Ureia
4.
J Am Chem Soc ; 134(24): 10299-305, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22642715

RESUMO

Protein modification has entered the limelight of chemical and biological sciences, since, by appending small molecules into proteins surfaces, fundamental biological and biophysical processes may be studied and even modulated in a physiological context. Herein we present a new strategy to modify the lysine's ε-amino group and the protein's N-terminal, based on the formation of stable iminoboronates in aqueous media. This functionality enables the stable and complete modification of these amine groups, which can be reversible upon the addition of fructose, dopamine, or glutathione. A detailed DFT study is also presented to rationalize the observed stability toward hydrolysis of the iminoboronate constructs.


Assuntos
Ácidos Borônicos/química , Iminas/química , Lisina/química , Proteínas/química , Dopamina/química , Frutose/química , Glutationa/química , Modelos Moleculares , Muramidase/química , Somatostatina/química
5.
Electrophoresis ; 33(24): 3764-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23161438

RESUMO

Echinoderms, as invertebrate deuterostomes, have amazing neuronal intrinsic growth aptitude triggered at any time point during the animal lifespan leading to successful functional tissue regrowth. This trait is known to be in opposition to their mammal close phylogenic relatives that have lost the ability to regenerate their central nervous system. Despite the promising nature of this intrinsic echinoderm trait, it was only recently that this complex biological event started to be unveiled. In the present study, a 2DE gel-based phosphoproteomics approach was used to investigate changes in starfish neuronal protein phosphorylation states at two different wound healing time-graded events following arm tip amputation, 48 h and 13 days. Among the resolved protein spots in 3.0-5.6 NL pH IEF strips, 190, 142, and 124 had a phosphoprotein signal in the control and the two injury experimental groups, respectively. Gel image analysis, highlighted 129 spots with an injury-related protein phosphorylation dynamics, several being exclusively phosphorylated in controls (72 spots), injured nerves (8 spots) or, showing significantly different phosphorylation ratios (37 spots). Within these, a total of 43 proteins were identified with MALDI-TOF/TOF. Altogether, several intervening proteins of important injury-signaling pathways that seem to be modulated through phosphorylation, were identified for the first time in starfish radial nerve cord early regeneration events. These include cytoskeleton re-organization toward the formation of the neuronal growth cones; cell membrane rearrangements, actin filaments, and microtubules dynamics; mRNA binding and transport; lipid signaling; Notch pathway; and neuropeptide processing.


Assuntos
Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Nervo Radial/fisiologia , Estrelas-do-Mar/fisiologia , Cicatrização/fisiologia , Animais , Eletroforese em Gel Bidimensional , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/química , Fosfoproteínas/análise , Fosfoproteínas/química , Fosforilação , Proteoma/análise , Proteoma/química , Proteômica/métodos , Nervo Radial/metabolismo , Estrelas-do-Mar/metabolismo
6.
Appl Microbiol Biotechnol ; 95(3): 767-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22622841

RESUMO

Extracellular polymeric substances (EPS) are keys in biomass aggregation and settleability in wastewater treatment systems. In membrane bioreactors (MBR), EPS are an important factor as they are considered to be largely responsible for membrane fouling. Proteins were shown to be the major component of EPS produced by activated sludge and to be correlated with the properties of the sludge, like settling, hydrophobicity and cell aggregation. Previous EPS proteomic studies of activated sludge revealed several problems, like the interference of other EPS molecules in protein analysis. In this study, a successful strategy was outlined to identify the proteins from soluble and bound EPS extracted from activated sludge of a lab-scale MBR. EPS samples were first subjected to pre-concentration through lyophilisation, centrifugal ultrafiltration or concentration with a dialysis membrane coated by a highly absorbent powder of polyacrylate-polyalcohol, preceded or not by a dialysis step. The highest protein concentration factors were achieved with the highly absorbent powder method without previous dialysis step. Four protein precipitation methods were then tested: acetone, trichloroacetic acid (TCA), perchloric acid and a commercial kit. Protein profiles were compared in 4-12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis gels. Both acetone and TCA should be applied for the highest coverage for soluble EPS proteins, whereas TCA was the best method for bound EPS proteins. All visible bands of selected profiles were subjected to mass spectrometry analysis. A high number of proteins (25-32 for soluble EPS and 17 for bound EPS) were identified. As a conclusion of this study, a workflow is proposed for the successful proteome characterisation of soluble and bound EPS from activated sludge samples.


Assuntos
Proteínas/isolamento & purificação , Proteoma/análise , Esgotos/química , Microbiologia da Água , Purificação da Água , Diálise , Eletroforese em Gel de Poliacrilamida , Precipitação Fracionada , Liofilização , Ultrafiltração
7.
Proteomics ; 11(17): 3587-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21751360

RESUMO

Sea star coelomic fluid is in contact with all internal organs, carrying signaling molecules and a large population of circulating cells, the coelomocytes. These cells, also known as echinoderm blood cells, are responsible for the innate immune responses and are also known to have an important role in the first stage of regeneration, i.e. wound closure, necessary to prevent disruption of the body fluid balance and to limit the invasion of pathogens. This study focuses on the proteome characterization of these multifunctional cells. The identification of 358 proteins was achieved using a combination of two techniques for protein separation (1-D SDS-PAGE followed by nanoLC and 2-D SDS-PAGE) and MALDI-TOF/TOF MS for protein identification. To our knowledge, the present report represents the first comprehensive list of sea star coelomocyte proteins, constituting an important database to validate many echinoderm-predicted proteins. Evidence for new pathways in these particular echinoderm cells are also described, and thus representing a valuable resource to stimulate future studies aiming to unravel the homology with vertebrate immune cells and particularly the origins of the immune system itself.


Assuntos
Proteoma/análise , Estrelas-do-Mar/citologia , Estrelas-do-Mar/imunologia , Animais , Eletroforese em Gel de Poliacrilamida , Imunidade Inata , Proteoma/imunologia , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Biol Chem ; 285(40): 30666-75, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20656686

RESUMO

Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 10(4) s(-1) m(-1) against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control.


Assuntos
Proteínas de Helminto/química , Insetos/parasitologia , Nematoides/enzimologia , Serina Proteases/química , Sequência de Aminoácidos , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Hemolinfa/parasitologia , Dados de Sequência Molecular , Nematoides/genética , Nematoides/patogenicidade , Oligopeptídeos/química , Controle Biológico de Vetores/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo
9.
Biochim Biophys Acta ; 1804(4): 856-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20044041

RESUMO

F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca(2+)-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be 'restored', i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Cricetinae , Regulador de Condutância Transmembrana em Fibrose Cística/química , Eletroforese em Gel Bidimensional , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Humanos , Técnicas In Vitro , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Análise Serial de Proteínas , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Estresse Fisiológico , Espectrometria de Massas em Tandem , Resposta a Proteínas não Dobradas
10.
BMC Biochem ; 12: 41, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21819598

RESUMO

BACKGROUND: Insulin is a hormone that regulates blood glucose homeostasis and is a central protein in a medical condition termed insulin injection amyloidosis. It is intimately associated with glycaemia and is vulnerable to glycation by glucose and other highly reactive carbonyls like methylglyoxal, especially in diabetic conditions. Protein glycation is involved in structure and stability changes that impair protein functionality, and is associated with several human diseases, such as diabetes and neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Familiar Amyloidotic Polyneuropathy. In the present work, methylglyoxal was investigated for their effects on the structure, stability and fibril formation of insulin. RESULTS: Methylglyoxal was found to induce the formation of insulin native-like aggregates and reduce protein fibrillation by blocking the formation of the seeding nuclei. Equilibrium-unfolding experiments using chaotropic agents showed that glycated insulin has a small conformational stability and a weaker dependence on denaturant concentration (smaller m-value). Our observations suggest that methylglyoxal modification of insulin leads to a less compact and less stable structure that may be associated to an increased protein dynamics. CONCLUSIONS: We propose that higher dynamics in glycated insulin could prevent the formation of the rigid cross-ß core structure found in amyloid fibrils, thereby contributing to the reduction in the ability to form fibrils and to the population of different aggregation pathways like the formation of native-like aggregates.


Assuntos
Insulina/química , Insulina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Glicosilação/efeitos dos fármacos , Humanos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
11.
Anal Biochem ; 407(1): 104-10, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20692224

RESUMO

The basic structural characterization of complex I is still not trivial due to its complexity, not only in the number of its protein constituents but especially because of the different properties of the several subunits. Bacterial complex I generally contains 14 subunits: 7 hydrophilic proteins located in the peripheral arm and 7 hydrophobic proteins present in the membrane arm. It is the identification of the hydrophobic proteins that makes the characterization of complex I, and of membrane proteins in general, very difficult. In this article, we report the identification of the subunits of complex I from Rhodothermus marinus. The original approach, presented here, combined several protein and peptides separation strategies (different reversed phase materials, high-performance liquid chromatography, and gel electrophoresis) with different identification methods (electrospray ionization-tandem mass spectrometry, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, and Edman degradation analysis) and represents a step forward in the characterization of membrane proteins that studies are still technically highly challenging. The combination of the different methodologies allowed the identification of complex I canonical subunits and also a possible novel subunit, namely a pterin-4α-carbinolamine dehydratase (PCD). This was the first time that a PCD was suggested to be part of complex I, and its possible regulatory role is discussed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Complexo I de Transporte de Elétrons/química , Eletroforese em Gel de Poliacrilamida/métodos , Rhodothermus/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Hidroliases/química , Subunidades Proteicas/química
12.
Chem Res Toxicol ; 23(11): 1714-25, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20809596

RESUMO

Nevirapine (NVP) is a non-nucleoside reverse transcriptase inhibitor used against human immunodeficiency virus type-1 (HIV-1), mostly to prevent mother-to-child HIV-1 transmission in developing countries. Despite its clinical efficacy, NVP administration is associated with a variety of toxic responses that include hepatotoxicity and skin rash. Although the reasons for the adverse effects of NVP administration are still unclear, increasing evidence supports the involvement of metabolic activation to reactive electrophiles. In particular, Phase II activation of the NVP metabolite 12-hydroxy-NVP is thought to mediate NVP binding to bionucleophiles, which may be at the onset of toxicity. In the present study, we investigated the nature and specific locations of the covalent adducts produced in human serum albumin and human hemoglobin by reaction in vitro with the synthetic model electrophile 12-mesyloxy-NVP, used as a surrogate for the Phase II metabolite 12-sulfoxy-NVP. Multiple sites of modification were identified by two different mass spectrometry-based methodologies, liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-TOF-TOF-MS). These two distinct methodologies, which in some instances afforded complementary information, allowed the identification of multiple adducts involving cysteine, lysine, tryptophan, histidine, serine, and the N-terminal valine of hemoglobin. Tryptophan, which is not a common site of covalent protein modification, was the NVP-modified amino acid residue detected in the two proteins and consistently identified by both LC-ESI-MS/MS and MALDI-TOF-TOF-MS. The propensity of tryptophan to react with the NVP-derived electrophile is further emphasized by the fact that human serum albumin possesses a single tryptophan residue, which suggests a remarkable selectivity that may be useful for biomonitoring purposes. Likewise, the NVP adduct with the terminal valine of hemoglobin, detected by LC-ESI-MS/MS after N-alkyl Edman degradation, appears as an easily assessed marker of NVP binding to proteins. Our results demonstrate the merits and complementarity of the two MS-based methodologies for the characterization of protein binding by NVP and suggest a series of plausible biomarkers of NVP toxicity that should be useful in the monitoring of toxicity effects in patients administered NVP.


Assuntos
Fármacos Anti-HIV/metabolismo , Biomarcadores/química , Nevirapina/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/toxicidade , Cromatografia Líquida de Alta Pressão , Infecções por HIV/tratamento farmacológico , Hemoglobinas/química , Humanos , Mesilatos/toxicidade , Dados de Sequência Molecular , Nevirapina/análogos & derivados , Nevirapina/uso terapêutico , Nevirapina/toxicidade , Inibidores da Transcriptase Reversa/uso terapêutico , Inibidores da Transcriptase Reversa/toxicidade , Albumina Sérica/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química
13.
Int J Food Sci Nutr ; 61(4): 357-68, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20109126

RESUMO

To date there are no licensed systemic or topical treatments in Europe or the USA for adenovirus infections. In the present paper, we evaluate the effect of a polyphenol-based grape extract (NE) obtained from Portuguese white-winemaking by-products, and Resveratrol in pure form, on adenovirus type 5 infection. For this purpose, recombinant adenovirus vectors (Ad-5) and a human-derived cell line (293) were used as models. The NE and Resveratrol at the used concentrations do not induce cell cytotoxicity or direct virucidal activity; however, they reduce 4.5 and 6.5 log (TCID(50)/ml) on total infectious Ad-5 production, respectively. The capacity of Ad-5 replication upon removal of NE and Resveratrol after 24 h post infection was also evaluated. In contrast to Resveratrol, the highest evaluated NE concentration inhibits irreversibly the Ad-5 replication. These results provide useful information for the use of NE and Resveratrol as potential sources of promising natural antiviral agents on Ad-5 infection.


Assuntos
Adenoviridae/efeitos dos fármacos , Infecções por Adenovirus Humanos/tratamento farmacológico , Antivirais/uso terapêutico , Extratos Vegetais/uso terapêutico , Estilbenos/uso terapêutico , Vitis/química , Vinho , Adenoviridae/fisiologia , Antivirais/farmacologia , Linhagem Celular , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Indústria Alimentícia , Frutas , Vetores Genéticos , Humanos , Resíduos Industriais , Fenóis/farmacologia , Fenóis/uso terapêutico , Extratos Vegetais/farmacologia , Polifenóis , Portugal , Resveratrol , Estilbenos/farmacologia , Replicação Viral/efeitos dos fármacos
14.
Front Cell Dev Biol ; 8: 335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582686

RESUMO

Recent evidence suggests that neural stem cell (NSC) fate is highly dependent on mitochondrial bioenergetics. Tauroursodeoxycholic acid (TUDCA), an endogenous neuroprotective bile acid and a metabolic regulator, stimulates NSC proliferation and enhances adult NSC pool in vitro and in vivo. In this study, we dissected the mechanism triggered by this proliferation-inducing molecule, namely in mediating metabolic reprogramming. Liquid chromatography coupled with mass spectrometry (LC-MS) based detection of differential proteomics revealed that TUDCA reduces the mitochondrial levels of the long-chain acyl-CoA dehydrogenase (LCAD), an enzyme crucial for ß-oxidation of long-chain fatty acids (FA). TUDCA impact on NSC mitochondrial proteome was further confirmed, including in neurogenic regions of adult rats. We show that LCAD raises throughout NSC differentiation, while its silencing promotes NSC proliferation. In contrast, nuclear levels of sterol regulatory element-binding protein (SREBP-1), a major transcription factor of lipid biosynthesis, changes in the opposite manner of LCAD, being upregulated by TUDCA. In addition, alterations in some metabolic intermediates, such as palmitic acid, also supported the TUDCA-induced de novo lipogenesis. More interestingly, a metabolic shift from FA to glucose catabolism appears to occur in TUDCA-treated NSCs, since mitochondrial levels of pyruvate dehydrogenase E1-α (PDHE1-α) were significant enhanced by TUDCA. At last, the mitochondria-nucleus translocation of PDHE1-α was potentiated by TUDCA, associated with an increase of H3-histones and acetylated forms. In conclusion, TUDCA-induced proliferation of NSCs involves metabolic plasticity and mitochondria-nucleus crosstalk, in which nuclear PDHE1-α might be required to assure pyruvate-derived acetyl-CoA for histone acetylation and NSC cycle progression.

15.
Proteomics ; 9(17): 4154-75, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19688748

RESUMO

Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound-healing process, were separated by 2-DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell-wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2-DE gels revealed a time-dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0-D2 and D4-D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound-periderm reconstruction. Some late-expressed proteins (D6-D8), including a suberisation-associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound-periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing-periderm formation processes.


Assuntos
Doenças das Plantas , Tubérculos/metabolismo , Proteômica , Solanum tuberosum/metabolismo , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Espectrometria de Massas , Peptídeos/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Tubérculos/citologia , Análise de Componente Principal , Solanum tuberosum/citologia
16.
J Biotechnol ; 139(1): 68-77, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18938200

RESUMO

In the present study we show that recombinant bacterial CotA-laccase from Bacillus subtilis is able to decolourise, at alkaline pH and in the absence of redox mediators, a variety of structurally different synthetic dyes. The enzymatic biotransformation of the azo dye Sudan Orange G (SOG) was addressed in more detail following a multidisciplinary approach. Biotransformation proceeds in a broad span of temperatures (30-80 degrees C) and more than 98% of Sudan Orange G is decolourised within 7h by using 1 U mL(-1) of CotA-laccase at 37 degrees C. The bell-shape pH profile of the enzyme with an optimum at 8, is in agreement with the pH dependence of the dye oxidation imposed by its acid-basic behavior as measured by potentiometric and electrochemical experiments. Seven biotransformation products were identified using high-performance liquid chromatography and mass spectrometry and a mechanistic pathway for the azo dye conversion by CotA-laccase is proposed. The enzymatic oxidation of the Sudan Orange G results in the production of oligomers and, possibly polymers, through radical coupling reactions. A bioassay based on inhibitory effects over the growth of Saccharomyces cerevisiae shows that the enzymatic bioremediation process reduces 3-fold the toxicity of Sudan Orange G.


Assuntos
Compostos Azo/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Lacase/metabolismo , Compostos Azo/química , Compostos Azo/farmacologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Bioensaio , Biotransformação , Cromatografia Líquida de Alta Pressão , Corantes/metabolismo , Eletroquímica , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Espectrometria de Massas , Modelos Químicos , Dinâmica não Linear , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espectrofotometria , Temperatura
17.
Biochem J ; 416(3): 317-26, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18651835

RESUMO

Protein glycation is involved in structure and stability changes that impair protein functionality, which is associated with several human diseases, such as diabetes and amyloidotic neuropathies (Alzheimer's disease, Parkinson's disease and Andrade's syndrome). To understand the relationship of protein glycation with protein dysfunction, unfolding and beta-fibre formation, numerous studies have been carried out in vitro. All of these previous experiments were conducted in non-physiological or pseudo-physiological conditions that bear little to no resemblance to what may happen in a living cell. In vivo, glycation occurs in a crowded and organized environment, where proteins are exposed to a steady-state of glycation agents, namely methylglyoxal, whereas in vitro, a bolus of a suitable glycation agent is added to diluted protein samples. In the present study, yeast was shown to be an ideal model to investigate glycation in vivo since it shows different glycation phenotypes and presents specific protein glycation targets. A comparison between in vivo glycated enolase and purified enolase glycated in vitro revealed marked differences. All effects regarding structure and stability changes were enhanced when the protein was glycated in vitro. The same applies to enzyme activity loss, dimer dissociation and unfolding. However, the major difference lies in the nature and location of specific advanced glycation end-products. In vivo, glycation appears to be a specific process, where the same residues are consistently modified in the same way, whereas in vitro several residues are modified with different advanced glycation end-products.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Arginina/metabolismo , Estabilidade Enzimática , Produtos Finais de Glicação Avançada/química , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Biomed Res Int ; 2018: 7456894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967784

RESUMO

Saliva gained interest as a potential noninvasive source of biomarkers in humans and that interest starts to be extended also to other animal species. For this purpose, the knowledge of the salivary proteome in healthy conditions and the factors that affect it and how they affect it are necessary. The aim of the present study was to assess the effect that gender and breed have in saliva proteome and the changes in it induced by stimulation with acid. Saliva from 4 different purebred dogs (Portuguese Podengo, Greyhound, Rafeiro Alentejano, and Beagle) of both genders was collected without and after stimulation with lemon juice. SDS-PAGE and two-dimensional gel electrophoresis (2-DE) profiles were compared and the proteins of interest in-gel digested and identified by mass spectrometry. Acid stimulation decreased total protein concentration and the relative amounts of some protein bands/spots. Gender appeared to have minimal effect in saliva proteome, whereas the influence of breed varies. Beagles and Portuguese Podengos were the two breeds with higher differences. In conclusion, stimulation procedures and dog breed should be considered in data analysis when using salivary proteins for diagnostic purposes.


Assuntos
Proteoma , Saliva/química , Animais , Biomarcadores/análise , Cães , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Proteínas e Peptídeos Salivares
19.
FEBS Lett ; 581(18): 3341-4, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17601576

RESUMO

Desulfovibrio vulgaris Hildenborough has a membrane-bound [NiFeSe] hydrogenase whose mode of membrane association was unknown since it is constituted by two hydrophilic subunits. This work shows that this hydrogenase is a bacterial lipoprotein bound to the membrane by lipidic groups found at the N-terminus of the large subunit, which is unusual since it is missing the typical lipoprotein signal peptide. Nevertheless, the large subunit has a conserved four residue lipobox and its synthesis is sensitive to the signal peptidase II inhibitor globomycin. The D. vulgaris [NiFeSe] hydrogenase is the first example of a bacterial lipoprotein translocated through the Tat pathway.


Assuntos
Desulfovibrio vulgaris/enzimologia , Hidrogenase/metabolismo , Lipoproteínas/metabolismo , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Sequência Conservada , Desulfovibrio vulgaris/genética , Hidrogenase/química , Hidrogenase/genética , Lipoproteínas/química , Lipoproteínas/genética , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
20.
FEBS J ; 273(23): 5273-87, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17064314

RESUMO

Protein glycation by methylglyoxal is a nonenzymatic post-translational modification whereby arginine and lysine side chains form a chemically heterogeneous group of advanced glycation end-products. Methylglyoxal-derived advanced glycation end-products are involved in pathologies such as diabetes and neurodegenerative diseases of the amyloid type. As methylglyoxal is produced nonenzymatically from dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate during glycolysis, its formation occurs in all living cells. Understanding methylglyoxal glycation in model systems will provide important clues regarding glycation prevention in higher organisms in the context of widespread human diseases. Using Saccharomyces cerevisiae cells with different glycation phenotypes and MALDI-TOF peptide mass fingerprints, we identified enolase 2 as the primary methylglyoxal glycation target in yeast. Two other glycolytic enzymes are also glycated, aldolase and phosphoglycerate mutase. Despite enolase's activity loss, in a glycation-dependent way, glycolytic flux and glycerol production remained unchanged. None of these enzymes has any effect on glycolytic flux, as evaluated by sensitivity analysis, showing that yeast glycolysis is a very robust metabolic pathway. Three heat shock proteins are also glycated, Hsp71/72 and Hsp26. For all glycated proteins, the nature and molecular location of some advanced glycation end-products were determined by MALDI-TOF. Yeast cells experienced selective pressure towards efficient use of d-glucose, with high methylglyoxal formation as a side effect. Glycation is a fact of life for these cells, and some glycolytic enzymes could be deployed to contain methylglyoxal that evades its enzymatic catabolism. Heat shock proteins may be involved in proteolytic processing (Hsp71/72) or protein salvaging (Hsp26).


Assuntos
Proteínas de Choque Térmico/metabolismo , Aldeído Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Frutose-Bifosfato Aldolase/metabolismo , Glicólise , Glicosilação , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA