Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 22(3): 506-517, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30609108

RESUMO

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (Vcmax ), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.


Assuntos
Aclimatação , Dióxido de Carbono , Fotossíntese , Adaptação Fisiológica , Nitrogênio , Folhas de Planta , Ribulose-Bifosfato Carboxilase
2.
Commun Biol ; 4(1): 462, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846550

RESUMO

There is huge uncertainty about how global exchanges of carbon between the atmosphere and land will respond to continuing environmental change. A better representation of photosynthetic capacity is required for Earth System models to simulate carbon assimilation reliably. Here we use a global leaf-trait dataset to test whether photosynthetic capacity is quantitatively predictable from climate, based on optimality principles; and to explore how this prediction is modified by soil properties, including indices of nitrogen and phosphorus availability, measured in situ. The maximum rate of carboxylation standardized to 25 °C (Vcmax25) was found to be proportional to growing-season irradiance, and to increase-as predicted-towards both colder and drier climates. Individual species' departures from predicted Vcmax25 covaried with area-based leaf nitrogen (Narea) but community-mean Vcmax25 was unrelated to Narea, which in turn was unrelated to the soil C:N ratio. In contrast, leaves with low area-based phosphorus (Parea) had low Vcmax25 (both between and within communities), and Parea increased with total soil P. These findings do not support the assumption, adopted in some ecosystem and Earth System models, that leaf-level photosynthetic capacity depends on soil N supply. They do, however, support a previously-noted relationship between photosynthesis and soil P supply.


Assuntos
Clima , Nutrientes/metabolismo , Fotossíntese , Plantas/metabolismo
3.
Nat Commun ; 12(1): 4866, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381045

RESUMO

Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential.


Assuntos
Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Clorofila/metabolismo , Clima , Ecossistema , Internacionalidade , Modelos Teóricos , Fósforo/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Solo/química
4.
Trends Ecol Evol ; 3(12): 343-5, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21227288

RESUMO

The pollen record of the past 10-20 thousand years is a source of data both on long-term climatic change and on the dynamics of plant populations in response to climatic change. Time sequences of pollen accumulation rates record invasions of tree taxa over 10(1)-10(3) years. Palaeoecologists have fifted such data with simple population dynamic models that assume a constant climate. Population doubling times estimated from the pollen record are consistent with species' life-history characteristics and with estimates based on the population structure of modern forests. This palaeo-ecological approach complements palaeoclimatological studies of longeer-term (10(3)-10(5)-year) population shifts, in which population response is assumed instantaneous. Both approaches depend on population responses being fast compared to the climatic changes that cause them. Pollen data also record the more complex interactions between climate and vegetation that occur during periods of rapid climatic change, and could be used to test more realistic models of vegetation dynamics in a changing environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA