Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 495: 42-53, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572140

RESUMO

Congenital Heart Disease (CHD) is the most common birth defect and leading cause of infant mortality, yet molecular mechanisms explaining CHD remain mostly unknown. Sequencing studies are identifying CHD candidate genes at a brisk rate including MINK1, a serine/threonine kinase. However, a plausible molecular mechanism connecting CHD and MINK1 is unknown. Here, we reveal that mink1 is required for proper heart development due to its role in left-right patterning. Mink1 regulates canonical Wnt signaling to define the cell fates of the Spemann Organizer and the Left-Right Organizer, a ciliated structure that breaks bilateral symmetry in the vertebrate embryo. To identify Mink1 targets, we applied an unbiased proteomics approach and identified the high mobility group architectural transcription factor, Hmga2. We report that Hmga2 is necessary and sufficient for regulating Spemann's Organizer. Indeed, we demonstrate that Hmga2 can induce Spemann Organizer cell fates even when ß-catenin, a critical effector of the Wnt signaling pathway, is depleted. In summary, we discover a transcription factor, Hmga2, downstream of Mink1 that is critical for the regulation of Spemann's Organizer, as well as the LRO, defining a plausible mechanism for CHD.


Assuntos
Gástrula , Organizadores Embrionários , Animais , Padronização Corporal/genética , Diferenciação Celular , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Organizadores Embrionários/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
2.
PLoS One ; 7(9): e44038, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957041

RESUMO

The nascent polypeptide-associated complex (NAC) is a highly conserved heterodimer important for metazoan development, but its molecular function is not well understood. Recent evidence suggests the NAC is a component of the cytosolic chaperone network that interacts with ribosomal complexes and their emerging nascent peptides, such that the loss of the NAC in chaperone-depleted cells results in an increase in misfolded protein stress. We tested whether the NAC functions similarly in Caeonorhabditis (C.) elegans and found that its homologous NAC subunits, i.e. ICD-1 and -2, have chaperone-like characteristics. Loss of the NAC appears to induce misfolded protein stress in the ER triggering the unfolded protein response (UPR). Depletion of the NAC altered the response to heat stress, and led to an up-regulation of hsp-4, a homologue of the human chaperone and ER stress sensor GRP78/BiP. Worms lacking both ICD-1 and the UPR transcription factor XBP-1 generated a higher proportion of defective embryos, showed increased embryonic apoptosis and had a diminished survival rate relative to ICD-1-depleted animals with an intact UPR. Up-regulation of hsp-4 in NAC-depleted animals was specific to certain regions of the embryo; in embryos lacking ICD-1, the posterior region of the embryo showed strong up-regulation of hsp-4, while the anterior region did not. Furthermore, loss of ICD-1 produced prominent lysosomes in the gut region of adults and embryos putatively containing lipofuscins, lipid/protein aggregates associated with cellular aging. These results are the first set of evidence consistent with a role for C. elegans NAC in protein folding and localization during translation. Further, these findings confirm C. elegans as a valuable model for studying organismal and cell-type specific responses to misfolded protein stress.


Assuntos
Chaperonas Moleculares/metabolismo , Animais , Caenorhabditis elegans , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Mucosa Intestinal/metabolismo , Lisossomos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Interferência de RNA , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA