Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608573

RESUMO

The application of life cycle assessment (LCA) to biorefineries is a necessary step to estimate their environmental sustainability. This review explores contemporary LCA biorefinery studies, across different feedstock categories, to understand approaches in dealing with key methodological decisions which arise, including system boundaries, consequential or attributional approach, allocation, inventory data, land use changes, product end-of-life (EOL), biogenic carbon storage, impact assessment and use of uncertainty analysis. From an initial collection of 81 studies, 59 were included within the final analysis, comprising 22 studies which involved dedicated feedstocks, 34 which involved residue feedstocks (including by-products and wastes), and a further 3 studies which involved multiple feedstocks derived from both dedicated and secondary sources. Many studies do not provide a comprehensive LCA assessment, often lacking detail on decisions taken, omitting key parts of the value chain, using generic data without uncertainty analyses, or omitting important impact categories. Only 28% of studies included some level of primary data, while 39% of studies did not undertake an uncertainty or sensitivity analysis. Just 8% of studies included data related to dLUC with a further 8% including iLUC, and only 14% of studies considering product end of life within their scope. The authors recommend more transparency in biorefinery LCA, with justification of key methodological decisions. A full value-chain approach should be adopted, to fully assess burdens and opportunities for biogenic carbon storage. We also propose a more prospective approach, taking into account future use of renewable energy sources, and opportunities for increasing circularity within bio-based value chains.


Assuntos
Indústria de Processamento de Alimentos , Incerteza
2.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805704

RESUMO

Nowadays, sustainable materials are receiving significant attention due to the fact that they will be crucial for the development of the next generation of products and devices. In the present work, hydrogels have been successfully synthesized using lignin which is non-valorized biopolymer from the paper industry. Hydrogels were prepared via crosslinking with Poly(ethylene) glycol diglycidyl ether (PEGDGE). Different crosslinker ratios were used to determine their influence on the structural and chemical properties of the resulting hydrogels. It has been found that pore size was reduced by increasing crosslinker amount. The greater crosslinking density increased the swelling capacity of the hydrogels due to the presence of more hydrophilic groups in the hydrogel network. Paracetamol release test showed higher drug diffusion for hydrogels produced with a ratio lignin:PEGDGE 1:1. The obtained results demonstrate that the proposed approach is a promising route to utilize lignocellulose waste for producing porous materials for advanced biomedical applications in the pharmacy industry.


Assuntos
Acetaminofen/administração & dosagem , Preparações de Ação Retardada/química , Lignina/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas , Resinas Epóxi/química , Liofilização , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Resíduos Industriais/análise , Lignina/análogos & derivados , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Annu Rev Biomed Eng ; 21: 495-521, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969794

RESUMO

The treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.


Assuntos
Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/cirurgia , Lesões do Menisco Tibial/patologia , Lesões do Menisco Tibial/cirurgia , Engenharia Tecidual/métodos , Fenômenos Biomecânicos , Força Compressiva/fisiologia , Humanos , Meniscos Tibiais/anatomia & histologia , Meniscos Tibiais/fisiologia , Procedimentos Ortopédicos/métodos , Procedimentos Ortopédicos/tendências , Osteoartrite do Joelho/fisiopatologia , Regeneração/fisiologia , Resistência à Tração/fisiologia , Lesões do Menisco Tibial/fisiopatologia , Engenharia Tecidual/tendências , Alicerces Teciduais
4.
Phys Chem Chem Phys ; 19(4): 2805-2815, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28067366

RESUMO

Molecular self-assembling block copolymers (BCPs) have shown promise as a next generation bottom-up lithography technology. However, a critical step in advancing this approach is the elimination of polymer dewetting due to bulk solvent nucleation and thermodynamically driven film rupture that can occur during the solvent vapor annealing process. We report on the pattern formation via phase segregation of spin coated diblock copolymer films through the investigation of annealing parameters in the limit of high solvent vapor saturation conditions that results in wafer-scale patterning without observing polymer dewetting defects. Specifically, the work addresses polymer dewetting in diblock copolymer nanodot templates through the use of a "neutral" functionalization layer and the development of a custom-built solvent vapor annealing chamber to precisely control saturation conditions. Furthermore, the long anneal times (4 h) using a standard static solvent vapor annealing procedure were reduced to ∼15-30 minutes with our dynamic solvent vapor annealing system for the high χ, cylindrical forming poly(styrene)-block-poly(4-vinyl-pyridine) [PS-b-P4VP] diblock copolymer system. We discuss the kinetic mechanism governing the phase segregation process that highlights the small processing window bounded by long phase segregation timescales (≳1 min) on one side and the initiation of polymer film dewetting on the other. These results demonstrate a key step towards realizing a high fidelity, low cost BCP patterning technique for large-scale "bottom-up" feature definition at nanometer length scales.

5.
Polymers (Basel) ; 16(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065275

RESUMO

The development of biomaterials tailored for various tissue engineering applications has been increasingly researched in recent years; however, stimulating cells to synthesise the extracellular matrix (ECM) is still a significant challenge. In this study, we investigate the use of ECM-like hydrogel materials composed of Gelatin methacryloyl (GelMA) and glycosaminoglycans (GAG), such as hyaluronic acid (HA) and chondroitin sulphate (CS), to provide a biomimetic environment for tissue repair. These hydrogels are fully characterised in terms of physico-chemical properties, including compression, swelling behaviour, rheological behaviour and via 3D printing trials. Furthermore, porous scaffolds were developed through freeze drying, producing a scaffold morphology that better promotes cell proliferation, as shown by in vitro analysis with fibroblast cells. We show that after cell seeding, freeze-dried hydrogels resulted in significantly greater amounts of DNA by day 7 compared to the GelMA hydrogel. Furthermore, freeze-dried constructs containing HA or HA/CS were found to have a significantly higher metabolic activity than GelMA alone.

6.
Int J Biol Macromol ; 273(Pt 2): 133093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866291

RESUMO

Hydrogels are of great importance in biomedical engineering. They possess the ability to mimic bodily soft tissues, and this allows exciting possibilities for applications such as tissue engineering, drug delivery and wound healing, however much work remains on stability and mechanical robustness to allow for translation to clinical applications. The work herein describes the synthesis and analysis of a biocompatible, versatile hydrogel that has tailorable swelling, high stability when swollen and thermal stability. The synthesis methods used produce a hydrogel with high elasticity, good mechanical properties and rapid crosslinking whilst displaying biocompatibility, adhesion, and conductivity. It has been shown that cell viability in the samples is above 80 % in all cases, a Young's Modulus of up to 85 kPa and high swelling degrees were achieved. These materials show potential for use in numerous applications such as adhesive sensors, skin grafts and drug delivery systems.


Assuntos
Acrilatos , Condutividade Elétrica , Ácido Hialurônico , Hidrogéis , Lignina , Nanopartículas , Hidrogéis/química , Acrilatos/química , Nanopartículas/química , Lignina/química , Ácido Hialurônico/química , Materiais Biocompatíveis/química , Adesivos/química , Polímeros/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Animais , Módulo de Elasticidade
7.
Int J Biol Macromol ; 266(Pt 2): 131456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588844

RESUMO

The red macroalga Sarcopeltis skottsbergii was subjected to hydrothermal processing to maximize the solubilization and recovery of carrageenan. Once isolated by ethanol precipitation, the carrageenan was further chemically (oligosaccharides composition), and structurally (TGA/DTG, DSC, HPSEC, FTIR-ATR, 1H NMR, SEM, etc.) characterized, as well as employed as source for the synthesis of hydrogels. The rheological properties of the carrageenan showed promising results as biopolymer for food applications due to the high molecular weight (500 kDa) presenting higher cell viability than 70 %. The evaluation of immune activation using ELISA test reflected a lower inflammatory response for concentrations of 0.025 % of carrageenan. Conversely, the cell viability of the synthesized hydrogels did not surpass 50 %. This work represents a considerable step forward to obtain a biopolymer from natural sources and a thorough study of their chemical, structural and biological properties.


Assuntos
Carragenina , Hidrogéis , Rodófitas , Engenharia Tecidual , Carragenina/química , Engenharia Tecidual/métodos , Hidrogéis/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Reologia , Humanos , Materiais Biocompatíveis/química , Peso Molecular
8.
Int J Pharm ; 663: 124596, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39154919

RESUMO

Polymorphism can be a valuable tool as well as an impediment in the development and approval of pharmaceuticals, providing an opportunity to tune active pharmaceutical ingredient (API) physicochemical properties. The control of polymorphism in cocrystalline systems and other multicomponent forms remains underexplored. The study herein aims to investigate the potential of several techniques, liquid-assisted grinding (LAG), solvent evaporation (SE), supercritical enhanced atomization (SEA) and electrospraying, to control the cocrystal polymorphic outcome of three cocrystals: isonicotinamide-citric acid (IsoCa), ethenzamide-saccharin (EthSac) and ethenzamide-gentisic acid (EthGa). Solvent selection employing LAG and SE showed little effect on polymorphic outcome. Electrospraying and SEA primarily produced the α form of IsoCa, with process parameter variations leading to the ß form during SEA, and a mixture of α and γ from electrospraying. Electrospraying led to the stable form I of EthSac, while SEA could produce pure form II, and a mixture. Electrospraying produced the form I of EthGa while SEA could produce form II, with an unknown polymorphic impurity. Density functional theory (DFT) computed electron density (ED) maps of cocrystal polymorph binary systems further rationalised the polymorphic predominance observed through the electrospraying. Ultimately this study provides a general road map for polymorph selection via atomization-based methodologies.

9.
ACS Sustain Chem Eng ; 12(6): 2352-2363, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362533

RESUMO

Lignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs). Dropwise injection of a lignin solution containing PVA sacrificial templates into liquid nitrogen produces tiny spheres that are lyophilized and carbonized to produce LSPCs. Most of the synthesized samples possess excellent specific surface areas (426.6-790.5 m2/g) along with hierarchical micro- and mesoporous morphologies. When tested in supercapacitor applications, LSPC-28 demonstrates a superior specific capacitance of 102.3 F/g at 0.5 A/g, excellent rate capability with 70.3% capacitance retention at 20 A/g, and a commendable energy density of 2.1 Wh/kg at 250 W/kg. These materials (LSPC-46) also show promising performance as an anode material in sodium-ion batteries with high reversible capacity (110 mAh g-1 at 100 mA g-1), high Coulombic efficiency, and excellent cycling stability. This novel and green technique is anticipated to facilitate the scalability of lignin-based porous carbons and open a range of research opportunities for energy storage applications.

10.
Sci Total Environ ; 949: 175035, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089380

RESUMO

The significant grasslands of Europe and its member states represents a significant feedstock opportunity for circular bioeconomy development. The development of green biorefineries (GBR), to supply protein for the feed industry from grass, could help many European member states to address significant deficits in protein availability and reduce imports. The current study assesses the environmental footprint of alternative GBR protein extraction techniques from grasses and legumes using life cycle assessment. The focus is on comparing feedstock and technology pathways that could displace soya bean imports. The study finds that leaf protein concentrate (LPC) produced from grass had an improved environmental performance when compared to soya bean meal (SBM), across the assessed feedstock (perennial ryegrass or grass-clover mixtures) and technology pathways (one-stage maceration versus multi-stage maceration). For example, in the case of Climate Change the emission intensity for LPC was 57-85 % lower per tonne of crude protein (CP) compared with SBM. Acidification burdens were 54-88 % lower, and Eutrophication: Freshwater burdens were 74-89 % lower. Some scenarios of GBR produced LPC with a larger Energy Resources: Non-Renewable burden than SBM, though this could be mitigated with higher renewable energy (biogas and wind energy) integration within the scenario. Grass-clover scenarios generally achieved a lower intensity of emissions compared to ryegrass scenarios, particularly in the category of Climate Change, where feedstock cultivation represented a significant contributor to impacts. Overall, GBR can produce high quality protein with a lower environmental burden than SBM, but choice of feedstock and system design are critical factors for overall environmental performance.


Assuntos
Fabaceae , Poaceae , Proteínas de Plantas , Mudança Climática
11.
Int J Biol Macromol ; 233: 123438, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709805

RESUMO

Tissue engineering (TE) has been proposed extensively as a potential solution to the worldwide shortages of donor organs needed for transplantation. Over the years, numerous hydrogel formulations have been studied for various TE endeavours, including bone, cardiac or neural TE treatment strategies. Amongst the materials used, organic and biocompatible materials which aim to mimic the natural extracellular matrix of the native tissue have been investigated to create biomimicry regenerative environments. As such, the comparison between studies using the same materials is often difficult to accomplish due to varying material concentrations, preparation strategies, and laboratory settings, and as such these variables have a huge impact on the physio-chemical properties of the hydrogel systems. The purpose of the current study is to investigate popular biomaterials such as alginate, hyaluronic acid and gelatin in a variety of concentrations and hydrogel formulations. This aims to provide a clear and comprehensive understanding of their behaviours and provide a rational approach as to the appropriate selection of natural polysaccharides in specific targeted TE strategies.


Assuntos
Ácido Hialurônico , Engenharia Tecidual , Ácido Hialurônico/química , Gelatina/química , Alginatos/química , Hidrogéis/química , Materiais Biocompatíveis/química , Alicerces Teciduais/química
12.
Bioact Mater ; 19: 458-473, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35574061

RESUMO

The relationships between hyaluronic acid (HA) and pathological microorganisms incite new understandings on microbial infection, tissue penetration, disease progression and lastly, potential treatments. These understandings are important for the advancement of next generation antimicrobial therapeutical strategies for the control of healthcare-associated infections. Herein, this review will focus on the interplay between HA, bacteria, fungi, and viruses. This review will also comprehensively detail and discuss the antimicrobial activity displayed by various HA molecular weights for a variety of biomedical and pharmaceutical applications, including microbiology, pharmaceutics, and tissue engineering.

13.
Drug Deliv Transl Res ; 13(1): 308-319, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851672

RESUMO

In the design of injectable antimicrobial dextran-alginate hydrogels, the impact of dextran oxidation and its subsequent changes in molecular weight and the incorporation of glycol chitosan on (i) gel mechanical strength and (ii) the inhibitory profile of an encapsulated bacteriocin, nisin A, are explored. As the degree of oxidation increases, the weight average molecular mass of the dextran decreases, resulting in a reduction in elastic modulus of the gels made. Upon encapsulation of the bacteriocin nisin into the gels, varying the dextran mass/oxidation level allowed the antimicrobial activity against S. aureus to be controlled. Gels made with a higher molecular weight (less oxidised) dextran show a higher initial degree of inhibition while those made with a lower molecular weight (more oxidised) dextran exhibit a more sustained inhibition. Incorporating glycol chitosan into gels composed of dextran with higher masses significantly increased their storage modulus and the gels' initial degree of inhibition.


Assuntos
Anti-Infecciosos , Bacteriocinas , Hidrogéis , Dextranos , Staphylococcus aureus
14.
Int J Biol Macromol ; 246: 125626, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392911

RESUMO

In this study, new TiO2-lignin hybrid systems were synthesized and characterized by various methods, including non-invasive backscattering (NIBS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and zeta potential analysis (ZP). The weak hydrogen bonds between the components, as shown on FTIR spectra, proved the production of class I hybrid systems. TiO2-lignin systems were found to display good thermal stability and relatively good homogeneity. These newly designed hybrid materials were used to produce functional composites via rotational molding in a linear low-density polyethylene (LLDPE) matrix at 2.5 % and 5.0 % loading by weight of the fillers, namely, TiO2, TiO2-lignin (5:1 wt./wt.), TiO2-lignin (1:1 wt./wt.), TiO2-lignin (1:5 wt./wt.) and pristine lignin, creating rectangular specimens. The mechanical properties of the specimens were measured via compression testing and by low-energy impact damage testing (the drop test). The results showed that the system containing 5.0 % by weight of TiO2-lignin (1:1 wt./wt.) had the most positive effect on the container's compression strength, while the LLDPE filled with 5.0 % by weight of TiO2-lignin (5:1 wt./wt.) demonstrated the best impact resistance among all the tested composites.

15.
Int J Biol Macromol ; 224: 1196-1205, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309240

RESUMO

In this study, hydrogels based on gelatin and lignin were fabricated as efficient drug carriers for Ribavirin. The obtained hydrogels were characterized by scanning electron microscopy (SEM), ATR-FTIR spectroscopy, differential scanning calorimetry (DSC), mechanical compression and rheometry. Results showed that the pore structure, viscoelastic behavior and swelling ability significantly influenced by varying lignin content and crosslinker ratio. By increasing the crosslinker N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) content, the pore size became smaller, while increasing the lignin content resulted in larger pores. In addition, all hydrogels show strong shear thinning behavior. Ribavirin was used as a drug model, and its release rate was enhanced by increasing lignin content in the binary hydrogel structure. A higher Ribavirin cumulative release was observed for gelatin/lignin with higher lignin content (3 %) hydrogel. These findings emphasize the chemical composition on the structure and the release behavior of lignin-containing hydrogels.


Assuntos
Portadores de Fármacos , Gelatina , Portadores de Fármacos/química , Gelatina/química , Lignina , Ribavirina , Hidrogéis/química
16.
Int J Biol Macromol ; 235: 123876, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870630

RESUMO

In this publication, the functional TiO2-lignin hybrid materials were designed and characterized. Based on elemental analysis and Fourier transform infrared spectroscopy, the efficiency of the mechanical method used to obtain systems was confirmed. Hybrid materials were also characterized by good electrokinetic stability, in particular in the inert and alkaline environments. The addition of TiO2 improves thermal stability in the entire analyzed range of temperatures. Similarly, as the content of inorganic component increases, the homogeneity of the system and the occurrence of smaller nanometric particles increase. In addition, a novel synthesis method of cross-linked polymer composites based on a commercial epoxy resin and an amine cross-linker was described as a part of the article, where additionally newly designed hybrids were also used. Subsequently, the obtained composites were subjected to simulated tests of accelerated UV-aging, and then their properties were studied, including changes in wettability (using water, ethylene glycol, and diiodomethane as measurement liquids) and surface free energy by the Owens-Wendt-Eabel-Kealble method. Changes in the chemical structure of the composites were monitored by FTIR spectroscopy due to aging. Microscopic studies of surfaces were also carried out as well as measurements in the field of changes in color parameters in the CIE-Lab system.


Assuntos
Resinas Epóxi , Lignina , Lignina/química , Resinas Epóxi/química , Titânio , Temperatura
17.
Int J Biol Macromol ; 219: 788-803, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35963345

RESUMO

Cellulose, an abundant natural polymer, has promising potential to be used for energy storage systems because of its excellent mechanical, structural, and physical characteristics. This review discusses the structural features of cellulose and describes its potential application as an electrode, separator, and binder, in various types of high-performing batteries. Various surface and structural characteristics of cellulose (e.g., fiber size, surface functional groups, the hierarchy of pores, and porosity levels) that contribute to its electrochemical performance are discussed. Cellulose structure/property/processing/function relationships are further focused and elucidated in terms of the latest developments in the emerging field of sustainable materials in Li-Ion, Na-Ion, and LiS batteries.


Assuntos
Celulose , Fontes de Energia Elétrica , Celulose/química , Eletrodos , Lítio/química , Sódio/química
18.
Int J Biol Macromol ; 221: 1142-1149, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36115449

RESUMO

Sustainable materials are attracting a lot of attention since they will be critical in the creation of the next generation of products and devices. In this study, hydrogels were effectively synthesized utilizing lignin, a non-valorised biopolymer from the paper industry. This study proposes a method based on utilizing lignin to create highly swollen hydrogels using poly(ethylene) glycol diglycidyl ether (PEGDGE) as a crosslinking agent. The influence of different crosslinker ratios on the structural and chemical properties of the resultant hydrogels was investigated. Pore size was observed to be lowered when the amount of crosslinker was increased. The inclusion of additional hydrophilic groups in the hydrogel network decreased the swelling capacity of the hydrogels as the crosslinking density increases. These precursor materials were carbonised and electrochemically tested for application as electrodes for supercapacitors with capacitance characterized as a function of crosslinker ratio.


Assuntos
Carbono , Lignina , Lignina/química , Carbono/química , Porosidade , Hidrogéis/química , Eletrodos
19.
Int J Biol Macromol ; 221: 1218-1227, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36087752

RESUMO

Curcumin is a known naturally occurring anti-inflammatory agent derived from turmeric, and it is commonly used as a herbal food supplement. Here, in order to overcome the inherent hydrophobicity of curcumin (Cur), polylactic acid (PLA) nanoparticles (NPs) were synthesised using a solvent evaporation, and an oil-in-water emulsion method used to encapsulate curcumin. Polymeric NPs also offer the ability to control rate of drug release. The newly synthesised NPs were analysed using a scanning electron microscope (SEM), where results show the NPs range from 50 to 250 nm. NPs containing graded amounts of curcumin (0 %, 0.5 %, and 2 %) were added to cultures of NIH3T3 fibroblast cells for cytotoxicity evaluation using the Alamar Blue assay. Then, the curcumin NPs were incorporated into an alginate/gelatin solution, prior to crosslinking using a calcium chloride solution (200 nM). These hydrogels were then characterised with respect to their chemical, mechanical and rheological properties. Following hydrogel optimization, hydrogels loaded with NP containing 2 % curcumin were selected as a candidate as a bioink for three-dimensional (3D) printing. The biological assessment for these bioinks/hydrogels were conducted using THP-1 cells, a human monocytic cell line. Cell viability and immunomodulation were evaluated using lactate dehydrogenase (LHD) and a tumour necrosis factor alpha (TNF-α) enzyme-linked immunosorbent (ELISA) assay, respectively. Results show that the hydrogels were cytocompatible and supressed the production of TNF-α. These bioactive hydrogels are printable, supress immune cell activation and inflammation showing immense potential for the fabrication of tissue engineering constructs.


Assuntos
Curcumina , Nanopartículas , Animais , Camundongos , Humanos , Curcumina/farmacologia , Curcumina/química , Gelatina/química , Alginatos/química , Fator de Necrose Tumoral alfa , Células NIH 3T3 , Nanopartículas/química , Poliésteres , Hidrogéis/química , Impressão Tridimensional
20.
Biomater Res ; 26(1): 63, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414973

RESUMO

BACKGROUND: Hostile environment around the lesion site following spinal cord injury (SCI) prevents the re-establishment of neuronal tracks, thus significantly limiting the regenerative capability. Electroconductive scaffolds are emerging as a promising option for SCI repair, though currently available conductive polymers such as polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) present poor biofunctionality and biocompatibility, thus limiting their effective use in SCI tissue engineering (TE) treatment strategies. METHODS: PEDOT NPs were synthesized via chemical oxidation polymerization in miniemulsion. The conductive PEDOT NPs were incorporated with gelatin and hyaluronic acid (HA) to create gel:HA:PEDOT-NPs scaffolds. Morphological analysis of both PEDOT NPs and scaffolds was conducted via SEM. Further characterisation included dielectric constant and permittivity variances mapped against morphological changes after crosslinking, Young's modulus, FTIR, DLS, swelling studies, rheology, in-vitro, and in-vivo biocompatibility studies were also conducted. RESULTS: Incorporation of PEDOT NPs increased the conductivity of scaffolds to 8.3 × 10-4 ± 8.1 × 10-5 S/cm. The compressive modulus of the scaffold was tailored to match the native spinal cord at 1.2 ± 0.2 MPa, along with controlled porosity. Rheological studies of the hydrogel showed excellent 3D shear-thinning printing capabilities and shape fidelity post-printing. In-vitro studies showed the scaffolds are cytocompatible and an in-vivo assessment in a rat SCI lesion model shows glial fibrillary acidic protein (GFAP) upregulation not directly in contact with the lesion/implantation site, with diminished astrocyte reactivity. Decreased levels of macrophage and microglia reactivity at the implant site is also observed. This positively influences the re-establishment of signals and initiation of healing mechanisms. Observation of axon migration towards the scaffold can be attributed to immunomodulatory properties of HA in the scaffold caused by a controlled inflammatory response. HA limits astrocyte activation through its CD44 receptors and therefore limits scar formation. This allows for a superior axonal migration and growth towards the targeted implantation site through the provision of a stimulating microenvironment for regeneration. CONCLUSIONS: Based on these results, the incorporation of PEDOT NPs into Gel:HA biomaterial scaffolds enhances not only the conductive capabilities of the material, but also the provision of a healing environment around lesions in SCI. Hence, gel:HA:PEDOT-NPs scaffolds are a promising TE option for stimulating regeneration for SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA