Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
J Cell Biol ; 156(1): 35-9, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11781333

RESUMO

Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo , Actinas/metabolismo , Transporte Biológico Ativo , Western Blotting , Exocitose , Complexo de Golgi/metabolismo , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Mutação/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/ultraestrutura , Temperatura , Fatores de Tempo
3.
J Cell Biol ; 163(1): 57-69, 2003 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-14557247

RESUMO

Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana , Microscopia Eletrônica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular
4.
Mol Cell Biol ; 26(19): 7299-317, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980630

RESUMO

A striking characteristic of a Rab protein is its steady-state localization to the cytosolic surface of a particular subcellular membrane. In this study, we have undertaken a combined bioinformatic and experimental approach to examine the evolutionary conservation of Rab protein localization. A comprehensive primary sequence classification shows that 10 out of the 11 Rab proteins identified in the yeast (Saccharomyces cerevisiae) genome can be grouped within a major subclass, each comprising multiple Rab orthologs from diverse species. We compared the locations of individual yeast Rab proteins with their localizations following ectopic expression in mammalian cells. Our results suggest that green fluorescent protein-tagged Rab proteins maintain localizations across large evolutionary distances and that the major known player in the Rab localization pathway, mammalian Rab-GDI, is able to function in yeast. These findings enable us to provide insight into novel gene functions and classify the uncharacterized Rab proteins Ypt10p (YBR264C) as being involved in endocytic function and Ypt11p (YNL304W) as being localized to the endoplasmic reticulum, where we demonstrate it is required for organelle inheritance.


Assuntos
Biologia Computacional , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Análise de Componente Principal , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia
5.
BMC Cell Biol ; 9: 3, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18211691

RESUMO

BACKGROUND: The appendage domain of the gammaCOP subunit of the COPI vesicle coat bears a striking structural resemblance to adaptin-family appendages despite limited primary sequence homology. Both the gammaCOP appendage domain and an equivalent region on betaCOP contain the FxxxW motif; the conservation of this motif suggested the existence of a functional appendage domain in betaCOP. RESULTS: Sequence comparisons in combination with structural prediction tools show that the fold of the COOH-terminus of Sec26p is strongly predicted to closely mimic that of adaptin-family appendages. Deletion of the appendage domain of Sec26p results in inviability in yeast, over-expression of the deletion construct is dominant negative and mutagenesis of this region identifies residues critical for function. The ArfGAP Glo3p was identified via suppression screening as a potential downstream modulator of Sec26p in a manner that is independent of the GAP activity of Glo3p but requires the presence of the COOH-terminal ISS motifs. CONCLUSION: Together, these results indicate an essential function for the predicted betaCOP appendage and suggest that both COPI appendages perform a biologically active regulatory role with a structure related to adaptin-family appendage domains.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteína Coatomer/química , Proteína Coatomer/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Motivos de Aminoácidos/genética , Sequência de Bases/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Retículo Endoplasmático Rugoso/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Complexo de Golgi/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Methods Enzymol ; 439: 315-25, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18374174

RESUMO

The regulation of membrane trafficking events in the secretory and endocytic pathways by Rab GTPases requires the cycling and activation of a Rab protein. The cycle of nucleotide binding and hydrolysis of Rab proteins is accompanied by a physical cycle of membrane translocation. An open question in membrane traffic remains how the cycle of Rab GTPase function is coupled to regulatory inputs from other cellular processes. This chapter describes the principles and methodologies used to identify the physiological regulators that influence Rab-mediated membrane traffic.


Assuntos
Exocitose/fisiologia , Histona Acetiltransferases/fisiologia , Fatores de Alongamento de Peptídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Animais , Formação de Anticorpos , Galinhas/imunologia , Gema de Ovo/imunologia , Histona Acetiltransferases/imunologia , Fatores de Alongamento de Peptídeos/imunologia , Proteínas de Saccharomyces cerevisiae/imunologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/fisiologia
7.
Mol Biol Cell ; 16(4): 1673-83, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15659647

RESUMO

Yeast Yip1p is a member of a conserved family of transmembrane proteins that interact with Rab GTPases. Previous studies also have indicated a role for Yip1p in the biogenesis of endoplasmic reticulum (ER)-derived COPII transport vesicles. In this report, we describe the identification and characterization of the uncharacterized open reading frame YER074W-A as a novel multicopy suppressor of the thermosensitive yip1-4 strain. We have termed this gene Yip One Suppressor 1 (YOS1). Yos1p is essential for growth and for function of the secretory pathway; depletion or inactivation of Yos1p blocks transport between the ER and the Golgi complex. YOS1 encodes an integral membrane protein of 87 amino acids that is conserved in eukaryotes. Yos1p localizes to ER and Golgi membranes and is efficiently packaged into ER-derived COPII transport vesicles. Yos1p associates with Yip1p and Yif1p, indicating Yos1p is a novel subunit of the Yip1p-Yif1p complex.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Animais , Genes Supressores , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação/genética , Fenótipo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Tempo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
8.
Mol Biol Cell ; 14(5): 1852-67, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12802060

RESUMO

The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.


Assuntos
Prenilação de Proteína , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas de Membrana/fisiologia , Mutação , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/genética
9.
J Cell Biol ; 214(6): 691-703, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27621363

RESUMO

Intracellular trafficking is an essential and conserved eukaryotic process. Rab GTPases are a family of proteins that regulate and provide specificity for discrete membrane trafficking steps by harnessing a nucleotide-bound cycle. Global proteomic screens have revealed many Rab GTPases as phosphoproteins, but the effects of this modification are not well understood. Using the Saccharomyces cerevisiae Rab GTPase Sec4p as a model, we have found that phosphorylation negatively regulates Sec4p function by disrupting the interaction with the exocyst complex via Sec15p. We demonstrate that phosphorylation of Sec4p is a cell cycle-dependent process associated with cytokinesis. Through a genomic kinase screen, we have also identified the polo-like kinase Cdc5p as a positive regulator of Sec4p phosphorylation. Sec4p spatially and temporally localizes with Cdc5p exclusively when Sec4p phosphorylation levels peak during the cell cycle, indicating Sec4p is a direct Cdc5p substrate. Our data suggest the physiological relevance of Sec4p phosphorylation is to facilitate the coordination of membrane-trafficking events during cytokinesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Membrana Celular/enzimologia , Citocinese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética
10.
Methods Enzymol ; 403: 19-28, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16473574

RESUMO

Researchers looking to solve biological problems have access to enormous amounts of sequence information and the desktop computational infrastructure to personally interrogate and analyze large datasets. Many powerful bioinformatics tools are available online; however, this discourages the customized analysis of data that is necessary for the experimental scientist to make maximally effective use of the information. In addition, a customized environment facilitates the critical evaluation of bioinformatic methods. This chapter presents a protocol developed to aid in classification of subfamilies and subclasses of a superfamily using the personal desktop computer. The visual representation of the qualitative and quantitative results of data analyses is also considered. The examples are focused on Rab GTPases but are more widely applicable to the classification of any given protein family.


Assuntos
Algoritmos , Filogenia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/classificação
11.
Methods Enzymol ; 403: 10-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16473573

RESUMO

The continuing explosion of sequencing data has inspired a corresponding effort in the annotation and classification of protein families. Within a particular protein family, however, individual members may have distinct functions, although they share a common fold and broadly defined physiological role. Rab GTPases are the largest subfamily of the Ras superfamily, yet from early in their discovery, it was apparent that each Rab protein has a unique subcellular localization and regulates a particular stage(s) membrane traffic. To gain insight into the contribution of individual residues to unique protein functions a general strategy is outlined. This method should allow the cell and molecular biologist with no specialist expertise to implement an algorithm that makes use of a combination of experimental and phylogenetic data. The algorithm is applicable to the analysis of any protein domain and here is illustrated with the analysis of residues contributing to the individual functions of a pair of Rab GTPases.


Assuntos
Algoritmos , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Proteínas rab de Ligação ao GTP/química
12.
Methods Enzymol ; 403: 333-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16473599

RESUMO

The YIP1 family of proteins is an intriguing collection of small membrane proteins with critical roles in membrane traffic. Although their mode of action is unknown, they are receiving attention as participants in vesicle biogenesis, and as factors that may mediate the association of Rab proteins with membranes. Yeast YIP1 is an essential gene and can be fully complemented by its human counterpart-suggesting that the essential function of Yip1p is evolutionarily conserved. This chapter presents methods for the cell biological and genetic analysis of Yip1p and other YIP1 family members in the yeast Saccharomyces cerevisiae.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/química , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular
13.
Genetics ; 168(4): 1827-41, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15611160

RESUMO

Yip1p is the first identified Rab-interacting membrane protein and the founder member of the YIP1 family, with both orthologs and paralogs found in all eukaryotic genomes. The exact role of Yip1p is unclear; YIP1 is an essential gene and defective alleles severely disrupt membrane transport and inhibit ER vesicle budding. Yip1p has the ability to physically interact with Rab proteins and the nature of this interaction has led to suggestions that Yip1p may function in the process by which Rab proteins translocate between cytosol and membranes. In this study we have investigated the physiological requirements for Yip1p action. Yip1p function requires Rab-GDI and Rab proteins, and several mutations that abrogate Yip1p function lack Rab-interacting capability. We have previously shown that Yip1p in detergent extracts has the capability to physically interact with Rab proteins in a promiscuous manner; however, a genetic analysis that covers every yeast Rab reveals that the Rab requirement in vivo is exclusively confined to a subset of Rab proteins that are localized to the Golgi apparatus.


Assuntos
Complexo de Golgi/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular
14.
FEBS Lett ; 515(1-3): 89-98, 2002 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11943201

RESUMO

The Rab GTPases are key regulators of membrane traffic. Yip1p is a membrane protein of unknown function that has been reported to interact with the Rabs Ypt1p and Ypt31p. In this study we identify Yif1p, and two unknown open reading frames, Ygl198p and Ygl161p, which we term Yip4p and Yip5p, as Yip1p-related sequences. We demonstrate that the Yip1p-related proteins possess several features: (i) they have a common overall domain topology, (ii) they are capable of biochemical interaction with a variety of Rab proteins in a manner dependent on C-terminal prenylation, and (iii) they share an ability to physically associate with other members of the YIP1 family.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Divisão Celular/fisiologia , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Proteínas Fúngicas/genética , Proteínas de Membrana , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Plasmídeos , Ligação Proteica/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular
15.
Mol Biol Cell ; 25(18): 2720-34, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25057019

RESUMO

An increasing number of cellular activities can be regulated by reversible lysine acetylation. Targeting the enzymes responsible for such posttranslational modifications is instrumental in defining their substrates and functions in vivo. Here we show that a Saccharomyces cerevisiae lysine deacetylase, Hos3, is asymmetrically targeted to the daughter side of the bud neck and to the daughter spindle pole body (SPB). The morphogenesis checkpoint member Hsl7 recruits Hos3 to the neck region. Cells with a defect in spindle orientation trigger Hos3 to load onto both SPBs. When associated symmetrically with both SPBs, Hos3 functions as a spindle position checkpoint (SPOC) component to inhibit mitotic exit. Neck localization of Hos3 is essential for its symmetric association with SPBs in cells with misaligned spindles. Our data suggest that Hos3 facilitates cross-talk between the morphogenesis checkpoint and the SPOC as a component of the intricate monitoring of spindle orientation after mitotic entry and before commitment to mitotic exit.


Assuntos
Histona Desacetilases/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Fuso Acromático/enzimologia , Acetilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteína-Arginina N-Metiltransferases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo
16.
PLoS One ; 6(9): e24332, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931684

RESUMO

The Rab family of Ras-related GTPases are part of a complex signaling circuitry in eukaryotic cells, yet we understand little about the mechanisms that underlie Rab protein participation in such signal transduction networks, or how these networks are integrated at the physiological level. Reversible protein phosphorylation is widely used by cells as a signaling mechanism. Several phospho-Rabs have been identified, however the functional consequences of the modification appear to be diverse and need to be evaluated on an individual basis. In this study we demonstrate a role for phosphorylation as a negative regulatory event for the action of the yeast Rab GTPase Sec4p in regulating polarized growth. Our data suggest that the phosphorylation of the Rab Sec4p prevents interactions with its effector, the exocyst component Sec15p, and that the inhibition may be relieved by a PP2A phosphatase complex containing the regulatory subunit Cdc55p.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Análise Mutacional de DNA , Exocitose , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/química
17.
J Cell Biol ; 182(5): 845-53, 2008 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-18779367

RESUMO

To maintain polarity, epithelial cells continuously sort transmembrane proteins to the apical or basolateral membrane domains during biosynthetic delivery or after internalization. During biosynthetic delivery, some cargo proteins move from the trans-Golgi network (TGN) into recycling endosomes (RE) before being delivered to the plasma membrane. However, proteins that regulate this transport step remained elusive. In this study, we show that Rab13 partially colocalizes with TGN38 at the TGN and transferrin receptors in RE. Knockdown of Rab13 with short hairpin RNA in human bronchial epithelial cells or overexpression of dominant-active or dominant-negative alleles of Rab13 in Madin-Darby canine kidney cells disrupts TGN38/46 localization at the TGN. Moreover, overexpression of Rab13 mutant alleles inhibits surface arrival of proteins that move through RE during biosynthetic delivery (vesicular stomatitis virus glycoprotein [VSVG], A-VSVG, and LDLR-CT27). Importantly, proteins using a direct route from the TGN to the plasma membrane are not affected. Thus, Rab13 appears to regulate membrane trafficking between TGN and RE.


Assuntos
Endossomos/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Autoantígenos/metabolismo , Polaridade Celular , Células Cultivadas , Cães , Humanos , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Transporte Proteico/fisiologia , Receptores da Transferrina/análise , Receptores da Transferrina/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/genética
18.
Cell ; 124(3): 464-6, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16469692

RESUMO

Understanding the molecular mechanisms that control the architecture of organelles is an area of intense study. In this issue of Cell, Voeltz et al. (2006) report that two membrane proteins, Rtn4a/NogoA and DP1/Yop1p, are responsible for the generation of tubular morphology in the endoplasmic reticulum (ER). The unusual membrane topology of these proteins may directly contribute to ER curvature.


Assuntos
Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell ; 17(6): 841-53, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15780940

RESUMO

The activation of Rab GTPases is a critical focal point of membrane trafficking events in eukaryotic cells; however, the cellular mechanisms that spatially and temporally regulate this process are poorly understood. Here, we identify a null allele of ELP1 as a suppressor of a mutant in a Rab guanine nucleotide exchange factor Sec2p. Elp1p was previously thought to be involved in transcription elongation as part of the Elongator complex. We show that elp1Delta suppression of sec2(ts) is not a result of reduced transcriptional elongation and that Elp1p physically associates with Sec2p. The Sec2p interaction domain of Elp1p is necessary for both Elp1p function and for the polarized localization of Sec2p. Mutations in human Elp1p (IKAP) are a known cause of familial dysautonomia (FD). Our results raise the possibility that regulation of polarized exocytosis is an evolutionarily conserved function of the entire Elongator complex and that FD results from a dysregulation of neuronal exocytosis.


Assuntos
Exocitose , Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Polaridade Celular , Citoplasma/metabolismo , Disautonomia Familiar/genética , Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina , Histona Acetiltransferases , Humanos , Dados de Sequência Molecular , Mutação/genética , Fatores de Alongamento de Peptídeos/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Eukaryot Cell ; 4(7): 1166-74, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16002643

RESUMO

Rab GTPases are crucial regulators of organelle biogenesis, maintenance, and transport. Multiple Rabs are expressed in all cells, and each is localized to a distinct set of organelles, but little is known regarding the mechanisms by which Rabs are targeted to their resident organelles. Integral membrane proteins have been postulated to serve as receptors that recruit Rabs from the cytosol in a complex with the Rab chaperone, GDI, to facilitate the dissociation of Rab and GDI, hence facilitating loading of Rabs on membranes. We show here that the yeast (Saccharomyces cerevisiae) Golgi Rab GTPase Ypt1p can be copurified with the integral membrane protein Yip3p from detergent cell extracts. In addition, a member of the highly conserved reticulon protein family, Rtn1p, is also associated with Yip3p in vivo. However, Ypt1p did not copurify with Rtn1p, indicating that Yip3p is a component of at least two different protein complexes. Yip3p and Rtn1p are only partially colocalized in cells, with Yip3p localized predominantly to the Golgi and secondarily to the endoplasmic reticulum, whereas Rtn1p is localized predominantly to the endoplasmic reticulum and secondarily to the Golgi. Surprisingly, the intracellular localization of Rabs was not perturbed in yip3Delta or rtn1Delta mutants, suggesting that these proteins do not play a role in targeting Rabs to intracellular membranes. These data indicate that Yip3p may have multiple functions and that its interaction with Rabs is not critical for their recruitment to organelle membranes.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Substâncias Macromoleculares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA