RESUMO
Noble gases are chemically inert, and it was therefore thought they would have little effect on biology. Paradoxically, it was found that they do exhibit a wide range of biological effects, many of which are target-specific and potentially useful and some of which have been demonstrated in vivo. The underlying mechanisms by which useful pharmacology, such as tissue and neuroprotection, anti-addiction effects, and analgesia, is elicited are relatively unexplored. Experiments to probe the interactions of noble gases with specific proteins are more difficult with gases than those with other chemicals. It is clearly impractical to conduct the large number of gas-protein experiments required to gain a complete picture of noble gas biology. Given the simplicity of atoms as ligands, in silico methods provide an opportunity to gain insight into which noble gas-protein interactions are worthy of further experimental or advanced computational investigation. Our previous validation studies showed that in silico methods can accurately predict experimentally determined noble gas binding sites in X-ray structures of proteins. Here, we summarize the largest reported in silico reverse docking study involving 127 854 protein structures and the five nonradioactive noble gases. We describe how these computational screening methods are implemented, summarize the main types of interactions that occur between noble gases and target proteins, describe how the massive data set that this study generated can be analyzed (freely available at group18.csiro.au), and provide the NDMA receptor as an example of how these data can be used to understand the molecular pharmacology underlying the biology of the noble gases. We encourage chemical biologists to access the data and use them to expand the knowledge base of noble gas pharmacology, and to use this information, together with more efficient delivery systems, to develop "atomic drugs" that can fully exploit their considerable and relatively unexplored potential in medicine.
Assuntos
Gases Nobres/metabolismo , Proteínas/metabolismo , Animais , Sítios de Ligação , Bases de Dados de Proteínas , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Proteoma/química , Proteoma/metabolismo , TermodinâmicaRESUMO
We have studied the architecture of parallel beta-sheets in proteins and focused on the residues that initiate and terminate the beta-strands. These beta-breaker residues are at the origin of the kink between the beta-strand and the turn that precedes or follows it. beta-Breakers can be located automatically using a consensus approach based on algorithmic secondary structure assignment, solvent accessibility and backbone dihedral angles. These beta-breakers are conformationally homogeneous with respect to side-chain solvent accessibility and backbone dihedral angle profile. A sequence-structure correlation is noted: a restricted subset of amino acids is observed at these positions. Analysis of homologous protein sequences shows that these residues are more highly conserved than other residues in the loop. We conclude that beta-breakers are the structural analogs of the N and C-terminal caps of alpha-helices. The identification of this aperiodic substructure suggests a strategy for improving secondary structure prediction and may guide site-directed mutagenesis experiments.
Assuntos
Conformação Proteica , Proteínas/química , Difração de Raios X , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Relação Estrutura-AtividadeRESUMO
Crystals of the recombinant 28 kDa glutathione S-transferase from Schistosoma mansoni have been obtained by the hanging-drop method of vapor diffusion from ammonium sulfate solutions. The successful crystallization of this enzyme required the presence of a reducing agent and S-hexylglutathione. The crystals belong to the cubic space group P4(1)32 (or P4(3)32), with unit cell dimensions a = 122.6 A and contain one molecule in the asymmetric unit. The crystals diffract to at least 2.8 A resolution and are suitable for X-ray crystallographic structure analysis.
Assuntos
Glutationa Transferase/química , Schistosoma mansoni/enzimologia , Animais , Clonagem Molecular , Cristalização , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Oxirredução , Difração de Raios XRESUMO
To improve the qualitative and quantitative analysis of surfaces of protein, two new methods are proposed: one that smoothes the MS surface of Connolly with B-spline smoothing functions to highlight the significant features of the surface, and one that computes the density of surface neighborhood to allow quantitative comparison.
Assuntos
Gráficos por Computador , Modelos Moleculares , Proteínas/química , Matemática , Conformação Proteica , Propriedades de SuperfícieRESUMO
A similar fold has been found in four archetype enzymes that perform different functions. This new fold has been named the T-fold because it is found in multimeric proteins crossed by a tunnel. The T-fold consists of an antiparallel beta-sheet of four sequential strands, and two antiparallel helices between the second and third strand, layered on the concave side of the beta-sheet. The presently known T-fold proteins share a high structural similarity (a mean of 1.4 A root mean square (r.m.s.) deviation on the common core) while they only exhibit a low level of sequence identity (a mean of 10.5% on the aligned regions). They bind to substrates belonging to the purine or pterin families, and share a fold-related binding site with a glutamate or glutamine residue anchoring the substrate and a lot of conserved interactions. They also share a similar oligomerization mode: several T-folds join together to form a beta(2n)alpha(n) barrel, then two barrels join together in a head-to-head fashion to made up the native enzymes. The T-fold has the characteristics of a globular domain, with a hydrophobic core and a clearly defined topohydrophobic network. It defines a new class of common folds or recurrent domains found in distantly related proteins. However, it is likely not stable in monomeric form and until now is only observed in association with other T-folds through multimerization. Proteins 2000;39:142-154.
Assuntos
Enzimas/química , Aldeído Liases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , GTP Cicloidrolase/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fósforo-Oxigênio Liases/química , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pterinas , Purinas , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Urato Oxidase/químicaRESUMO
MOTIVATION: The secondary structure is a key element of architectural organization in proteins. Accurate assignment of the secondary structure elements (SSE) (helix, strand, coil) is an essential step for the analysis and modelling of protein structure. Various methods have been proposed to assign secondary structure. Comparative studies of their results have shown some of their drawbacks, pointing out the difficulties in the task of SSE assignment. RESULTS: We have designed a new automatic method, named P-SEA, to assign efficiently secondary structure from the sole C alpha position. Some advantages of the new algorithm are discussed. AVAILABILITY: The program P-SEA is available by anonymous ftp: ftp.lmcp.jussieu.fr directory: pub/.
Assuntos
Estrutura Secundária de Proteína , Proteínas/química , Software , Algoritmos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Bases de Dados Factuais , Proteínas de Escherichia coli , Dados de Sequência Molecular , Dobramento de Proteína , Proteínas/genéticaRESUMO
Accurate assignments of secondary structures in proteins are crucial for a useful comparison with theoretical predictions. Three major programs which automatically determine the location of helices and strands are used for this purpose, namely DSSP, P-Curve and Define. Their results have been compared for a non-redundant database of 154 proteins. On a residue per residue basis, the percentage match score is only 63% between the three methods. While these methods agree on the overall number of residues in each of the three states (helix, strand or coil), they differ on the number of helices or strands, thus implying a wide discrepancy in the length of assigned structural elements. Moreover, the length distribution of helices and strands points to the existence of artefacts inherent to each assignment algorithm. To overcome these difficulties a consensus assignment is proposed where each residue is assigned to the state determined by at least two of the three methods. With this assignment the artefacts of each algorithm are attenuated. The residues assigned in the same state by the three methods are better predicted than the others. This assignment will thus be useful for analysing the success rate of prediction methods more accurately.
Assuntos
Algoritmos , Estrutura Secundária de Proteína , Software , Fenômenos Químicos , Físico-Química , Bases de Dados FactuaisRESUMO
Phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GraP-DH) catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate to form 1.3-diphosphoglycerate. The currently accepted mechanism involves an oxidoreduction step followed by a phosphorylation. Two essential aminoacids, Cys149 and His176 are involved in the chemical mechanism of bacterial and eukaryotic GraP-DHs. Roles have been assigned to the His176 as (a) a chemical activator for enhancing the reactivity of Cys149, (b) a stabilizator of the tetrahedral transition states, and (c) a base catalyst facilitating hydride transfer towards NAD. In a previous study carried out on Escherichia coli GraP-DH [Soukri, A., Mougin, A., Corbier, C., Wonacott, A. J., Branlant, C. & Branlant, G. (1989) Biochemistry, 28, 2586-2592], the role of His176 as an activator of the reactivity of Cys149 was studied. Here, we further investigated the role of the His residue in the chemical mechanism of phosphorylating GraP-DH from E. coli and Bacillus stearothermophilus. The chemical reactivity of Cys149 in the His176Asn mutant was reinvestigated. At neutral pH, its reactivity was shown to be at least as high as that observed in the Cys-/His+ ion pair present in the wild type. No pre-steady state burst of NADH was found with the His176Asn mutant in contrast to what is observed for the wild type, and a primary isotope effect was observed when D-[1-2H]glyceraldehyde-3-phosphate was used as the substrate. Therefore, the major role of the His176 in the catalytic mechanism under physiological conditions is not to activate the nucleophilicity of Cys149 but first to facilitate the hydride transfer. These results hypothesized that a phosphorylating GraP-DH possessing a different protein environment competent to increase the nucleophilic character of the essential Cys residue and to favor the hydride transfer in place of His, could be enzymically efficient. This is most likely the case for archaeal Methanothermus fervidus GraP-DH which shares less than 15% amino-acid identity with the bacterial or eukaryotic counterparts. No Cys-/His+ ion pair was detectable. Only one thiolate entity was observed with an apparent pKa of 6.2. This result was confirmed by the fact that none of the mutations of the five invariant His changed the catalytic efficiency.
Assuntos
Archaea/enzimologia , Cisteína , Escherichia coli/enzimologia , Geobacillus stearothermophilus/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Gliceraldeído-3-Fosfato Desidrogenases/isolamento & purificação , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por SubstratoRESUMO
Phosphorylating archaeal D-glyceraldehyde 3-phosphate dehydrogenases (GraP-DHs) share only 15-20% identity with their glycolytic bacterial and eukaryotic counterparts. Unlike the latter which are NAD-specific, archaeal GraP-DHs exhibit a dual-cofactor specificity with a marked preference for NADP. In the present study, we have constructed a three-dimensional model of the Methanothermus fervidus GraP-DH based upon the X-ray structures of the Bacillus stearothermophilus and Escherichia coli GraP-DHs. The overall structure of the archaeal enzyme is globally similar to homology modelling-derived structures, in particular for the cofactor binding domain, which might adopt a classical Rossmann fold. M. fervidus GraP-DH can be considered as a dimer of dimers which exhibits negative and positive cooperativity in binding the coenzymes NAD and NADP, respectively. As expected, the differences between the model and the templates are located mainly within the loops. Based on the predictions derived from molecular modelling, site-directed mutagenesis was performed to characterize better the cofactor binding pocket and the catalytic domain. The Lys32Ala, Lys32Glu and Lys32Asp mutants led to a drastic increase in the Km value for NADP (i.e. 165-, 500- and 1000-fold, respectively), thus demonstrating that the invariant Lys32 residue is one of the most important determinants favouring the adenosine 2'-PO42- binding of NADP. The involvement of the side chain of Asn281, which was postulated to play a role equivalent to that of the Asn313 of bacterial and eukaryotic GraP-DHs in fixing the position of the nicotinamide ring in a syn orientation [Fabry, S. & Hensel, R. (1988) Gene 64, 189-197], was ruled out. Most of the amino acids involved in catalysis and in substrate recognition in bacterial and eukaryotic GraP-DHs are not conserved in the archaeal enzyme except for the essential Cys149. Inspection of our model suggests that side chains of invariant residues Asn150, Arg176, Arg177 and His210 are located in or near the active site pocket. The Arg177Asn mutation induced strong allosteric properties with the Pi, indicating that this residue should be located near to the intersubunit interfaces. The Arg176Asn mutation led to a 10-fold decrease in the kcat, a 35-fold increase in the Km value for D-glyceraldehyde 3-phosphate and a 1000-fold decrease in the acylation rate. These results strongly suggest that Arg176 is involved in the Ps site. The His210Asn mutation increased the pKapp of the catalytic Cys149 from 6.3 to 7.6, although no Cys-/His+ ion pair was detectable [Talfournier, F., Colloc'h, N., Mornon, J.P. & Branlant, G. (1998) Eur. J. Biochem. 252, 447-457]. No other invariant amino acid which can play a role as a base catalyst to favour the hydride transfer is located in the active site. The fact that the efficiency of phosphorolysis is 1000-fold lower when compared to the B. stearothermophilus GraP-DH suggests significant differences in the nature of the Pi site. Despite these differences, it is likely that the archaeal GraP-DHs and their bacterial and eukaryotic counterparts have evolved from a common ancestor.
Assuntos
Proteínas Arqueais/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Methanobacteriales/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Escherichia coli/enzimologia , Análise de Injeção de Fluxo , Geobacillus stearothermophilus/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/metabolismo , NADP/metabolismo , Alinhamento de SequênciaRESUMO
The carbapenem-hydrolyzing class A beta-lactamase Sme-1 from Serratia marcescens S6 was expressed in Escherichia coli and purified by ion-exchange chromatography and gel filtration. Crystals of the purified enzyme were obtained by the hanging drop vapor diffusion method using polyethylene glycol 4000 as precipitant. The crystals belong to the monoclinic space group P21 with unit cell parameters a = 81.48 A, b = 51.76 A, c = 71.81 A, alpha = gamma = 90 degrees, and beta = 118.71 degrees. There are two monomers in the asymmetric unit and the calculated Matthew's volume is 2.26 A3/Da. The crystals, which diffract to at least 2.3 A resolution, are suitable for X-ray structure analysis.
Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X , Serratia marcescens/enzimologia , beta-Lactamases/química , Proteínas de Bactérias/isolamento & purificação , Carbapenêmicos/metabolismo , beta-Lactamases/isolamento & purificaçãoRESUMO
X-ray diffraction is used to study the binding of xenon and krypton to a variety of crystallised proteins: porcine pancreatic elastase; subtilisin Carlsberg from Bacillus licheniformis; cutinase from Fusarium solani; collagenase from Hypoderma lineatum; hen egg lysozyme, the lipoamide dehydrogenase domain from the outer membrane protein P64k from Neisseria meningitidis; urate-oxidase from Aspergillus flavus, mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis and the ligand-binding domain of the human nuclear retinoid-X receptor RXR-alpha. Under gas pressures ranging from 8 to 20 bar, xenon is able to bind to discrete sites in hydrophobic cavities, ligand and substrate binding pockets, and into the pore of channel-like structures. These xenon complexes can be used to map hydrophobic sites in proteins, or as heavy-atom derivatives in the isomorphous replacement method of structure determination.
Assuntos
Proteínas/química , Animais , Humanos , Criptônio , XenônioRESUMO
Transforming growth factor-beta (TGF-beta) signaling requires a ligand-dependent interaction of TGF-beta receptors Tau beta R-I and Tau beta R-II. It has been previously demonstrated that a soluble TGF-beta type II receptor could be used as a TGF-beta antagonist. Here we have generated and investigated the biochemical and signaling properties of a soluble TGF-beta type I receptor (Tau beta RIs-Fc). As reported for the wild-type receptor, the soluble Tau beta R-I does not bind TGF-beta 1 on its own. Surprisingly, in the absence of TGF-beta1, the Tau beta RIs-Fc mimicked TGF-beta 1-induced transcriptional and growth responses in mink lung epithelial cells (Mv1Lu). Signaling induced by the soluble TGF-beta type I receptor is mediated via the obligatory presence of both TGF-beta type I and type II receptors at the cell surface since no signal was observed in Mv1Lu-derivated mutants for TGF-beta receptors R-1B and DR-26. The comparison between the structures of TGF-betas and a three-dimensional model of the extracellular domain of Tau beta RI has shown that five residues of the supposed binding site of TGF-beta 1 (Lys(31), His(34), Glu(5), Tyr(91), and Lys(94)) were found with equivalent biochemical properties and similar spatial positions.
Assuntos
Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Divisão Celular/fisiologia , Linhagem Celular , Cricetinae , Primers do DNA , Imunoglobulina G/metabolismo , Vison , Dados de Sequência Molecular , Conformação Proteica , Receptores de Fatores de Crescimento Transformadores beta/química , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Solubilidade , Fator de Crescimento Transformador beta/metabolismoRESUMO
The gene coding for urate oxidase, an enzyme that catalyzes the oxidation of uric acid to allantoin, is inactivated in humans. Consequently, urate oxidase is used as a protein drug to overcome severe disorders induced by uric acid accumulation. The structure of the active homotetrameric enzyme reveals the existence of a small architectural domain that we call T-fold (for tunnelling-fold) domain. It assembles to form a perfect unusual dimeric alpha 8 beta 16 barrel. Urate oxidase may be the archetype of an expanding new family of tunnel-shaped proteins that now has three members; tetrahydropterin synthase, GTP cyclohydrolase I and urate oxidase. The structure of the active site of urate oxidase around the 8-azaxanthine inhibitor reveals an original mechanism of oxidation that does not require any ions or prosthetic groups.