RESUMO
Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.
Assuntos
Bryopsida/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Bases , Bleomicina/farmacologia , Bryopsida/efeitos dos fármacos , Bryopsida/efeitos da radiação , Cisplatino/farmacologia , Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Metanossulfonato de Metila/farmacologia , Mutação/genética , Taxa de Mutação , Fenótipo , Raios Ultravioleta , DNA Polimerase tetaRESUMO
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.
Assuntos
Proteínas de Bactérias/genética , Bryopsida/genética , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes/métodos , Técnicas de Introdução de Genes , Técnicas de Transferência de Genes , RNA Guia de Cinetoplastídeos/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Marcação de Genes/métodos , Genoma de Planta , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por RecombinaçãoRESUMO
The ability to address the CRISPR-Cas9 nuclease complex to any target DNA using customizable single-guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single-guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2-fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end-joining (alt-EJ)-driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology-driven repair (HDR) at the target locus but also that Cas9-induced double-strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR-mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR-induced HDR is only partially mediated by the classical homologous recombination pathway.
Assuntos
Proteínas de Arabidopsis/genética , Bryopsida/enzimologia , Bryopsida/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Marcação de Genes/métodos , Mutagênese , Rad51 Recombinase/genética , Adenina/análogos & derivados , Adenina/farmacologia , Reparo do DNA por Junção de Extremidades , Endonucleases , Engenharia Genética/métodos , Genoma de Planta , Recombinação Homóloga , Plantas Geneticamente Modificadas , Protoplastos , Rad51 Recombinase/metabolismo , Deleção de Sequência , Homologia de Sequência , Streptococcus pyogenes/genética , Transformação GenéticaRESUMO
KEY MESSAGE: New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.
Assuntos
Produtos Agrícolas/genética , Engenharia Genética/métodos , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas/genética , Variação Genética , Fenótipo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas/genéticaRESUMO
To respect the European labelling threshold for the adventitious presence of genetically modified organisms (GMOs) in food and feed, stakeholders mainly rely on real-time PCR analysis, which provides a measurement expressed as a percentage of GM-DNA. However, this measurement veils the complexity of gene flow, especially in the case of gene stacking. We have investigated the impact of gene stacking on adventitious GM presence due to pollen flow and seed admixture as well as its translation in terms of the percentage of GM-DNA in a non-GM maize harvest. In the case of varieties bearing one to four stacked events, we established a set of relationships between the percentage of GM kernels and the percentage of GM-DNA in a non-GM harvest as well as a set of relationships between the rate of seed admixture and the percentages of GM material in a non-GM harvest. Thanks to these relationships, and based on simulations with a gene flow model, we have been able to demonstrate that the number of events and the stacking structure of the emitting fields impact the ability of a non-GM maize producer to comply with given GM kernel or GM-DNA thresholds. We also show that a great variability in the rates of GM kernels, embryos and DNA results from seed admixture. Finally, the choice of a unit of measurement for a GM threshold in seed lots can have opposite effects on the ability of farmers to comply with a given threshold depending on whether they are crop or seed producers.
Assuntos
DNA de Plantas/genética , Fluxo Gênico , Genoma de Planta , Zea mays/genética , Simulação por Computador , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , DNA de Plantas/metabolismo , Hemizigoto , Modelos Genéticos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/metabolismo , Polinização , Recombinação Genética , Sementes/genética , Sementes/metabolismo , Transgenes , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismoRESUMO
CRISPR and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR-Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted, in Physcomitrium patens, a comprehensive genome-wide investigation of off-target mutations using either a CRISPR-Cas9 or a TALEN strategy. We observed a similar number of differences for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and did not lead to transgene integration. The PEG treatment, a well-established biotechnological method, in itself, was the main source of mutations found in the edited plants.
Assuntos
Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas/genética , Plantas Geneticamente Modificadas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genéticaRESUMO
Molecular markers linked to phenotypically important traits are of great interest especially when traits are difficult and/or costly to be observed. In tomato where a strong focus on resistance breeding has led to the introgression of several resistance genes, resistance traits have become important characteristics in distinctness, uniformity and stability (DUS) testing for Plant Breeders Rights (PBR) applications. Evaluation of disease traits in biological assays is not always straightforward because assays are often influenced by environmental factors, and difficulties in scoring exist. In this study, we describe the development and/or evaluation of molecular marker assays for the Verticillium genes Ve1 and Ve2, the tomato mosaic virus Tm1 (linked marker), the tomato mosaic virus Tm2 and Tm2 ( 2 ) genes, the Meloidogyne incognita Mi1-2 gene, the Fusarium I (linked marker) and I2 loci, which are obligatory traits in PBR testing. The marker assays were evaluated for their robustness in a ring test and then evaluated in a set of varieties. Although in general, results between biological assays and marker assays gave highly correlated results, marker assays showed an advantage over biological tests in that the results were clearer, i.e., homozygote/heterozygote presence of the resistance gene can be detected and heterogeneity in seed lots can be identified readily. Within the UPOV framework for granting of PBR, the markers have the potential to fulfil the requirements needed for implementation in DUS testing of candidate varieties and could complement or may be an alternative to the pathogenesis tests that are carried out at present.
Assuntos
Ligação Genética , Imunidade Inata/genética , Mapeamento Físico do Cromossomo/métodos , Doenças das Plantas/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Genes de Plantas/genética , Loci Gênicos/genética , Marcadores Genéticos , Solanum lycopersicum/parasitologia , Solanum lycopersicum/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Reprodutibilidade dos Testes , Seleção GenéticaRESUMO
The Judgment of 25 July 2018 of the Court of Justice of the European Union (CJEU) was optimistically awaited by breeders and supporters of agricultural biotechnology, but shortly after the press release advancing the Judgment, hope turned into frustration. Opinions on how to frame the New Breeding Techniques (NBT) in the context of Directive 2001/18/EC were issued before the Judgment, while proposals to assist the EU legislator to amend the regime driven by the Directive have been also provided afterwards by scientists and institutional bodies around the EU. However, they do not seem to have paid so much attention to the Judgment itself. This paper focuses on the Judgment. It finds out that while the impacts of the Judgment on the NBT might have been slightly overvalued, its potential negative effects on techniques of random mutagenesis and varieties breed through them have been generally underestimated if not absolutely overlooked. The analysis also shows that the Judgment does not preempt the possibility to exempt certain applications of some NBT from the scope of Directive 2001/18/EC, and, in fact, ODM, SDN1, and SDN2 might be, under certain conditions, easily exempted from its scope without the need of a deep legislative revolution nor even the amendment of Directive 2001/18/EC. As regards techniques of random mutagenesis and mutant varieties bred by means of those techniques, until action is taken by Member States (if finally taken), no real limitations upon them are to be feared. However, if Member States start to consider the path opened by the CJEU, then their regulation at an EU level should be readily explored in order to avoid further negative effects on plant breeding as well as on the free movement inside the EU of those varieties and the products thereof.
RESUMO
Somatic hybrids of potato with a cultivated relative, Solanum stenotomum also called Solanum tuberosum Stenotomum group, were evaluated for their physiological and agronomical characteristics as well as the stability of the introgressed resistance to bacterial wilt, caused by Ralstonia solanacearum, after a long-term in vitro conservation for more than 5 years. Analysis of photosynthesis showed that the PEPC/Rubisco ratio remained lower than 0.5 for all vitroplants of potato and the somatic hybrids, except for the relative species. This indicates that the carbon metabolism is heterotrophic (ratio>1) for S. stenotomum, and autotrophic for potato and the somatic hybrids (ratio<1). In both in vitro and greenhouse conditions, potato and the somatic hybrids produced few bigger tubers, while many small tubers were obtained from the relative. The hybrid tubers were morphologically intermediate. The starch content of hybrid tubers was much lower than that of potato, but similar to that of the relative species. Interestingly, the level of bacterial resistance, introgressed from S. stenotomum into potato, was shown to be very stable and remained as high as that of the relative after a long-term period of in vitro conservation.
Assuntos
Solanum tuberosum/genética , Solanum/genética , Western Blotting , Diploide , Hibridização Genética , Fotossíntese , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Ralstonia solanacearum/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/metabolismo , Solanum/metabolismo , Solanum/microbiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologiaRESUMO
T25 is one of the 4 maize transformation events from which commercial lines have so far been authorized in Europe. It was created by polyethylene glycol-mediated transformation using a construct bearing one copy of the synthetic pat gene associated with both promoter and terminator of the 35S ribosomal gene from cauliflower mosaic virus. In this article, we report the sequencing of the whole T25 insert and the characterization of its integration site by using a genome walking strategy. Our results confirmed that one intact copy of the initial construct had been integrated in the plant genome. They also revealed, at the 5' junction of the insert, the presence of a second truncated 35S promoter, probably resulting from rearrangements which may have occurred before or during integration of the plasmid DNA. The analysis of the junction fragments showed that the integration site of the insert presented high homologies with the Huck retrotransposon family. By using one primer annealing in the maize genome and the other in the 5' end of the integrated DNA, we developed a reliable event-specific detection system for T25 maize. To provide means to comply with the European regulation, a real-time PCR test was designed for specific quantitation of T25 event by using Taqman chemistry.
Assuntos
Alimentos Geneticamente Modificados , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Zea mays/química , Zea mays/genética , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Sequência de Bases , Primers do DNA , DNA de Plantas/genética , União Europeia , Legislação sobre Alimentos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Sementes/químicaRESUMO
A highly sensitive quantitative real-time assay targeted on the 35S promoter of a commercial genetically modified organism (GMO) was characterized (sF/sR primers) and developed for an ABI Prism 7700 Sequence Detection System and TaqMan chemistry. The specificity assessment and performance criteria of sF/sR assay were compared to other P35S-targeted published assays. sF/sR primers amplified a 79 base pair DNA sequence located in a part of P35S that is highly conserved among many caulimovirus strains, i.e., this consensus part of CaMV P35S is likely to be present in many GM events. According to the experimental conditions, the absolute limit of detection for Bt176 corn was estimated between 0.2 and 2 copies of equivalent genome (CEG). The limit of quantification was reached below 0.1% Bt176 content. A Cauliflower Mosaic Virus control (CaMV) qualitative assay targeted on the ORF III of the viral genome was also used as a control (primers 3F/3R) to assess the presence of CaMV in plant-derived products. The specificity of this test was assessed on various CaMV strains, including the Figwort Mosaic Virus (FMV) and solanaceous CaMV strains. Considering the performance of sF/sR quantification test, the highly conserved sequence, and the small size of the amplicon, this assay was tested in a collaborative study in order to be proposed as an international standard.