Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 17(4): 305-16, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11295829

RESUMO

Large-scale human genotyping requires technologies with a minimal number of steps, high accuracy, and the ability to automate at a reasonable cost. In this regard, we have developed a rapid, cost-effective readout method for single nucleotide polymorphism (SNP) genotyping that combines an easily automatable single-tube allele-specific primer extension (ASPE) with an efficient high throughput flow cytometric analysis performed on a Luminex 100 flow cytometer. This robust technique employs an ASPE reaction using PCR-derived target DNA containing the SNP and a pair of synthetic complementary capture probes that differ at their 3' end-nucleotide defining the alleles. Each capture probe has been synthesized to contain a unique 25-nucleotide identifying sequence (ZipCode) at its 5' end. An array of fluorescent microspheres, covalently coupled with complementary ZipCode sequences (cZipCodes), was hybridized to biotin-labeled ASPE reaction products, sequestering them for flow cytometric analysis. ASPE offers both an advantage of streamlining the SNP analysis protocol and an ability to perform multiplex SNP analysis on any mixture of allelic variants. All steps of the assay are simple additions of the solutions, incubations, and washes. This technique was used to assay 15 multiplexed SNPs on human chromosome 12 from 96 patients. Comparison of the microsphere-based ASPE assay results to gel-based oligonucleotide ligation assay (OLA) results showed 99.2% agreement in genotype assignments. In addition, the microsphere-based multiplex SNPs assay system was adapted for the identification of bacterial samples by both ASPE and single base chain extension (SBCE) assays. A series of probes designed for different variable sites of bacterial 16S rDNA permitted multiplex analysis and generated species- or genus-specific patterns. Seventeen bacterial species representing a broad range of gram-negative and gram-positive bacteria were analyzed within 16 variable sites of 16S rDNA sequence. The results were consistent with the published sequences and confirmed by direct DNA sequencing.


Assuntos
Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único/genética , Alelos , Cromossomos Humanos Par 12/genética , Primers do DNA/genética , Sondas de DNA/genética , Citometria de Fluxo , Fluorescência , Corantes Fluorescentes/metabolismo , Testes Genéticos/economia , Humanos , Microesferas , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
2.
Toxicol Sci ; 80(1): 183-92, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15084755

RESUMO

Peroxisome proliferation in the liver is a well-documented response that occurs in some species upon treatment with hypolipidemic drugs, such as fibrates. Typically, liver peroxisome proliferation has been estimated by direct counting via electron microscopy, as well as by gene expression, enzyme activity, and immunolabeling. We have developed a novel method for the immunofluorescent labeling of peroxisomes, using an antibody to the 70-kDa peroxisomal membrane protein (PMP70) coupled with fluorescent nanocrystals, Quantum Dots. This method is applicable to standard formalin-fixed, paraffin-embedded tissues. Using this technique, a dose-dependent increase in PMP70 labeling was evident in formalin-fixed liver sections from fenofibrate-treated rats. In formalin-fixed liver sections from cynomolgus monkeys given ciprofibrate, quantitative image analysis showed a statistically significant increase in PMP70 labeling compared to control; the increase in hepatic PMP70 protein levels was corroborated by immunoblotting using total liver protein. An increase in hepatic peroxisome number in ciprofibrate-treated monkeys was confirmed by electron microscopy. An advantage of the Quantum Dot/PMP70 method is that a single common protocol can be used to label peroxisomes from several different species, and many of the common problems that arise with immunolabeling, such as fading and low signal strength, are eliminated.


Assuntos
Clofibrato/farmacologia , Fenofibrato/farmacologia , Fígado/efeitos dos fármacos , Peroxissomos/química , Animais , Clofibrato/administração & dosagem , Relação Dose-Resposta a Droga , Fenofibrato/administração & dosagem , Imunofluorescência , Secções Congeladas , Humanos , Immunoblotting , Fígado/metabolismo , Fígado/ultraestrutura , Macaca fascicularis , Masculino , Proteínas de Membrana/biossíntese , Microscopia Eletrônica , Peroxissomos/metabolismo , Pontos Quânticos , Ratos , Ratos Wistar , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA