Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172036

RESUMO

Zymoseptoria tritici is the fungal pathogen responsible for Septoria tritici blotch on wheat. Disease outcome in this pathosystem is partly determined by isolate-specific resistance, where wheat resistance genes recognize specific fungal factors triggering an immune response. Despite the large number of known wheat resistance genes, fungal molecular determinants involved in such cultivar-specific resistance remain largely unknown. We identified the avirulence factor AvrStb9 using association mapping and functional validation approaches. Pathotyping AvrStb9 transgenic strains on Stb9 cultivars, near isogenic lines and wheat mapping populations, showed that AvrStb9 interacts with Stb9 resistance gene, triggering an immune response. AvrStb9 encodes an unusually large avirulence gene with a predicted secretion signal and a protease domain. It belongs to a S41 protease family conserved across different filamentous fungi in the Ascomycota class and may constitute a core effector. AvrStb9 is also conserved among a global Z. tritici population and carries multiple amino acid substitutions caused by strong positive diversifying selection. These results demonstrate the contribution of an 'atypical' conserved effector protein to fungal avirulence and the role of sequence diversification in the escape of host recognition, adding to our understanding of host-pathogen interactions and the evolutionary processes underlying pathogen adaptation.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Peptídeo Hidrolases/metabolismo , Proteínas Fúngicas/metabolismo , Endopeptidases/metabolismo , Doenças das Plantas/microbiologia
2.
New Phytol ; 214(2): 619-631, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28164301

RESUMO

Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Genes de Plantas , Triticum/genética , Triticum/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Proteínas Fúngicas/química , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas/genética , Virulência/genética
3.
Nat Commun ; 15(1): 1933, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431601

RESUMO

Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.


Assuntos
Estudo de Associação Genômica Ampla , Adaptação ao Hospedeiro , Virulência/genética , Polimorfismo Genético , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA