Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38739552

RESUMO

Callose is a vital component in plant biology, contributing to essential processes like pollen maturation and defense against pathogens. However, misconceptions surrounding callose staining persist, particularly regarding the role of aniline blue. It is now known that commercial aniline blue contains sirofluor, and it is this fluorophore, rather than aniline blue itself, that is responsible for the observed fluorescence during callose detection.

2.
BMC Plant Biol ; 23(1): 72, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36726070

RESUMO

BACKGROUND: Conventional crop protection has major drawbacks, such as developing pest and pathogen insensitivity to pesticides and low environmental compatibility. Therefore, alternative crop protection strategies are needed. One promising approach treats crops with chemical compounds that induce the primed state of enhanced defense. However, identifying priming compounds is often tedious as it requires offline sampling and analysis. High throughput screening methods for the analysis of priming-active compounds have great potential to simplify the search for such compounds. One established method to identify priming makes use of parsley cell cultures. This method relies on measurement of fluorescence of furanocoumarins in the final sample. This study demonstrates for the first time the online measurement of furanocoumarins in microtiter plates. As not all plants produce fluorescence molecules as immune response, a signal, which is not restricted to a specific plant is required, to extend online screening methods to other plant cell cultures. It was shown that the breathing activity of primed parsley cell cultures increases, compared to unprimed parsley cell cultures. The breathing activity can by monitored online. Therefore, online identification of priming-inducing compounds by recording breathing activity represents a promising, straight-forward and highly informative approach. However, so far breathing has been recorded in shake flasks which suffer from low throughput. For industrial application we here report a high-throughput, online identification method for identifying priming-inducing chemistry. RESULTS: This study describes the development of a high-throughput screening system that enables identifying and analyzing the impact of defense priming-inducing compounds in microtiter plates. This screening system relies on the breathing activity of parsley cell cultures. The validity of measuring the breathing activity in microtiter plates to drawing conclusions regarding priming-inducing activity was demonstrated. Furthermore, for the first time, the fluorescence of the priming-active reference compound salicylic acid and of furanocoumarins were simultaneously monitored online. Dose and time studies with salicylic acid-treated parsley cell suspensions revealed a wide range of possible addition times and concentrations that cause priming. The online fluorescence measuring method was further confirmed with three additional compounds with known priming-causing activity. CONCLUSIONS: Determining the OTR, fluorescence of the priming-active chemical compound SA and of furanocoumarins in parsley suspension cultures in MTPs by online measurement is a powerful and high-throughput tool to study possible priming compounds. It allows an in-depth screening for priming compounds and a better understanding of the priming process induced by a given substance. Evaluation of priming phenomena via OTR should also be applicable to cell suspensions of other plant species and varieties and allow screening for priming-inducing chemical compounds in intact plants. These online fluorescence methods to measure the breathing activity, furanocoumarin and SA have the potential to accelerate the search for new priming compounds and promote priming as a promising, eco-friendly crop protection strategy.


Assuntos
Furocumarinas , Petroselinum , Técnicas de Cultura de Células/métodos , Ácido Salicílico , Ensaios de Triagem em Larga Escala/métodos
3.
Plant Biotechnol J ; 21(12): 2490-2506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578146

RESUMO

Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.


Assuntos
Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Escopoletina/metabolismo , Micotoxinas/metabolismo , Suscetibilidade a Doenças/metabolismo , Cumarínicos/metabolismo , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
Plant Physiol ; 187(4): 2381-2392, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34609515

RESUMO

The purification of low-abundance protein complexes and detection of in vivo protein-protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL-TAP-MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL-TAP-MS to study the MKK2-Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde-crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2-MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein-protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL-TAP-MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein-protein interactions.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/genética , Espectrometria de Massas/métodos , Quinases de Proteína Quinase Ativadas por Mitógeno/isolamento & purificação , Proteínas Quinases Ativadas por Mitógeno/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteômica/métodos
5.
Immunol Rev ; 283(1): 21-40, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29664574

RESUMO

Over the last decades, there was increasing evidence for the presence of innate immune memory in living organisms. In this review, we compare the innate immune memory of various organisms with a focus on phylogenetics. We discuss the acquisition and molecular basis of immune memory and we describe the innate immune memory paradigm and its role in host defense during evolution. The molecular characterization of innate immunological memory in diverse organisms and host-parasite systems reconciles mechanisms with phenomena and paves the way to molecular comprehension of innate immune memory. We also revise the traditional classification of innate and adaptive immunity in jawed vertebrates. We emphasize that innate immune responses have the capacity to be "primed" or "trained", thereby exerting a yet unknown type of immunological memory upon re-infection.


Assuntos
Imunidade Inata , Memória Imunológica , Imunidade Adaptativa , Animais , Evolução Biológica , Comunicação Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Pesquisa , Seleção Genética
6.
BMC Plant Biol ; 21(1): 324, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225655

RESUMO

BACKGROUND: Growing large crop monocultures and heavily using pesticides enhances the evolution of pesticide-insensitive pests and pathogens. To reduce pesticide use in crop cultivation, the application of priming-active compounds (PrimACs) is a welcome alternative. PrimACs strengthen the plant immune system and could thus help to protect plants with lower amounts of pesticides. PrimACs can be identified, for example, by their capacity to enhance the respiratory activity of parsley cells in culture as determined by the oxygen transfer rate (OTR) using the respiration activity monitoring system (RAMOS) or its miniaturized version, µRAMOS. The latter was designed for with suspensions of bacteria and yeast cells in microtiter plates (MTPs). So far, RAMOS or µRAMOS have not been applied to adult plants or seedlings, which would overcome the limitation of (µ)RAMOS to plant suspension cell cultures. RESULTS: In this work, we introduce a modified µRAMOS for analysis of plant seedlings. The novel device allows illuminating the seedlings and records the respiratory activity in each well of a 48-well MTP. To validate the suitability of the setup for identifying novel PrimAC in Arabidopsis thaliana, seedlings were grown in MTP for seven days and treated with the known PrimAC salicylic acid (SA; positive control) and the PrimAC candidate methyl 1-(3,4-dihydroxyphenyl)-2-oxocyclopentane-1-carboxylate (Tyr020). Twenty-eight h after treatment, the seedlings were elicited with flg22, a 22-amino acid peptide of bacterial flagellin. Upon elicitation, the respiratory activity was monitored. The evaluation of the OTR course reveals Tyr020 as a likely PrimAC. The priming-inducing activity of Tyr020 was confirmed using molecular biological analyses in A. thaliana seedlings. CONCLUSION: We disclose the suitability of µRAMOS for identifying PrimACs in plant seedlings. The difference in OTR during a night period between primed and unprimed plants was distinguishable after elicitation with flg22. Thus, it has been shown that the µRAMOS device can be used for a reliable screening for PrimACs in plant seedlings.


Assuntos
Arabidopsis/efeitos da radiação , Luz , Plântula/fisiologia , Plântula/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Respiração Celular/efeitos da radiação
7.
Plant J ; 99(3): 397-413, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148306

RESUMO

The fungus Phakopsora pachyrhizi (Pp) causes Asian soybean rust (SBR) disease which provokes tremendous losses in global soybean production. Pp is mainly controlled with synthetic fungicides to which the fungus swiftly develops fungicide resistance. To substitute or complement synthetic fungicides in Asian soybean rust control, we aimed to identify antifungal metabolites in Arabidopsis which is not a host for Pp. Comparative transcriptional and metabolic profiling of the Pp-inoculated Arabidopsis non-host and the soybean host revealed induction of phenylpropanoid metabolism-associated genes in both species but activation of scopoletin biosynthesis only in the resistant non-host. Scopoletin is a coumarin and an antioxidant. In vitro experiments disclosed fungistatic activity of scopoletin against Pp, associated with reduced accumulation of reactive oxygen species (ROS) in fungal pre-infection structures. Non-antioxidant and antioxidant molecules including coumarins with a similar structure to scopoletin were inactive or much less effective at inhibiting fungal accumulation of ROS and germination of Pp spores. When sprayed onto Arabidopsis leaves, scopoletin also suppressed the formation of Pp pre-infection structures and penetration of the plant. However, scopoletin neither directly activated defence nor did it prime Arabidopsis for enhanced defence, therefore emphasizing fungistatic activity as the exclusive mode of action of scopoletin against Pp. Because scopletin also protected soybean from Pp infection, the coumarin may serve as a natural fungicide or as a lead for the development of near-to-nature fungicides against Asian soybean rust.


Assuntos
Arabidopsis/genética , Cumarínicos/metabolismo , Glycine max/genética , Doenças das Plantas/genética , Escopoletina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Phakopsora pachyrhizi/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Glycine max/metabolismo , Glycine max/microbiologia
8.
Plant Physiol ; 181(2): 817-833, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337712

RESUMO

Upon local infection, plants activate a systemic immune response called systemic acquired resistance (SAR). During SAR, systemic leaves become primed for the superinduction of defense genes upon reinfection. We used formaldehyde-assisted isolation of regulatory DNA elements coupled to next-generation sequencing to identify SAR regulators. Our bioinformatic analysis produced 10,129 priming-associated open chromatin sites in the 5' region of 3,025 genes in the systemic leaves of Arabidopsis (Arabidopsis thaliana) plants locally infected with Pseudomonas syringae pv. maculicola Whole transcriptome shotgun sequencing analysis of the systemic leaves after challenge enabled the identification of genes with priming-linked open chromatin before (contained in the formaldehyde-assisted isolation of regulatory DNA elements sequencing dataset) and enhanced expression after (included in the whole transcriptome shotgun sequencing dataset) the systemic challenge. Among them, Arabidopsis MILDEW RESISTANCE LOCUS O3 (MLO3) was identified as a previously unidentified positive regulator of SAR. Further in silico analysis disclosed two yet unknown cis-regulatory DNA elements in the 5' region of genes. The P-box was mainly associated with priming-responsive genes, whereas the C-box was mostly linked to challenge. We found that the P- or W-box, the latter recruiting WRKY transcription factors, or combinations of these boxes, characterize the 5' region of most primed genes. Therefore, this study provides a genome-wide record of genes with open and accessible chromatin during SAR and identifies MLO3 and two previously unidentified DNA boxes as likely regulators of this immune response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Ligação a Calmodulina/metabolismo , Imunidade Vegetal , Arabidopsis/metabolismo , Pseudomonas syringae , Elementos Reguladores de Transcrição
9.
Semin Immunol ; 28(4): 319-27, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27264335

RESUMO

The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.


Assuntos
Infecções Bacterianas/imunologia , Imunidade Inata , Memória Imunológica , Imunidade Vegetal , Raízes de Plantas/imunologia , Plantas/imunologia , Animais , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Metilação de DNA , Etilenos/metabolismo , Humanos , Oxilipinas/metabolismo , Ácidos Pipecólicos/metabolismo , Raízes de Plantas/microbiologia , Receptores de Reconhecimento de Padrão/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais
10.
Plant Physiol ; 176(3): 2395-2405, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29288231

RESUMO

Modern crop production calls for agrochemicals that prime plants for enhanced defense. Reliable test systems for spotting priming-inducing chemistry, however, are rare. We developed an assay for the high-throughput search for compounds that prime microbial pattern-induced secretion of antimicrobial furanocoumarins (phytoalexins) in cultured parsley cells. The screen produced 1-isothiocyanato-4-methylsulfinylbutane (sulforaphane; SFN), a secondary metabolite in many crucifers, as a novel defense priming compound. While elucidating SFN's mode of action in defense priming, we found that in Arabidopsis (Arabidopsisthaliana) the isothiocyanate provokes covalent modification (K4me3, K9ac) of histone H3 in the promoter and promoter-proximal region of defense genes WRKY6 and PDF12, but not PR1 SFN-triggered H3K4me3 and H3K9ac coincide with chromatin unpacking in the WRKY6 and PDF12 regulatory regions, primed WRKY6 expression, unprimed PDF12 activation, and reduced susceptibility to downy mildew disease (Hyaloperonospora arabidopsidis). Because SFN also directly inhibits Harabidopsidis and other plant pathogens, the isothiocyanate is promising for the development of a plant protectant with a dual mode of action.


Assuntos
Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Histonas/metabolismo , Isotiocianatos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Isotiocianatos/química , Lisina/metabolismo , Oomicetos/patogenicidade , Oxirredução , Petroselinum/citologia , Petroselinum/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Sesquiterpenos/metabolismo , Sulfóxidos , Enxofre/química , Enxofre/metabolismo , Fatores de Transcrição/genética , Fitoalexinas
11.
BMC Plant Biol ; 18(1): 101, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859042

RESUMO

BACKGROUND: Ethylene is an important plant hormone that controls many physiological processes in plants. Conventional methods for detecting ethylene include gas chromatographs or optical mid-infrared sensors, which are expensive and, in the case of gas chromatographs, are hardly suitable for automated parallelized online measurement. Electrochemical ethylene sensors are cheap but often suffer from poor resolution, baseline drifting, and target gas oxidation. Thus, measuring ethylene at extremely low levels is challenging. RESULTS: This report demonstrates the integration of electrochemical ethylene sensors into a respiration activity monitoring system (RAMOS) that measures, in addition to the oxygen transfer rate, the ethylene transfer rate in eight parallel shake flasks. A calibration method is presented that is not prone to baseline drifting and considers target gas oxidation at the sensor. In this way, changes in ethylene transfer rate as low as 4 nmol/L/h can be resolved. In confirmatory experiments, the overall accuracy of the method was similar to that of gas chromatography-mass spectrometry (GC/MS) measurements. The RAMOS-based ethylene determination method was exemplified with parsley suspension-cultured cells that were primed for enhanced defense by pretreatment with salicylic acid, methyl jasmonate or 4-chlorosalicylic acid and challenged with the microbial pattern Pep13. Ethylene release into the headspace of the shake flask was observed upon treatment with salicylic acid and methyl jasmonate was further enhanced, in case of salicylic acid and 4-chlorosalicylic acid, upon Pep13 challenge. CONCLUSION: A conventional RAMOS device was modified for simultaneous measurement of the ethylene transfer rate in eight parallel shake flasks at nmol/L/h resolution. For the first time electrochemical sensors are used to provide a medium-throughput method for monitoring ethylene release by plants. Currently, this can only be achieved by costly laser-based detection systems and automated gas chromatographs. The new method is particularly suitable for plant cell suspension cultures. However, the method may also be applicable to intact plants, detached leaves or other plant tissues. In addition, the general principle of the technology is likely extendable to other volatiles or gases as well, such as nitric oxide or hydrogen peroxide.


Assuntos
Etilenos/análise , Petroselinum/metabolismo , Reguladores de Crescimento de Plantas/análise , Acetatos/metabolismo , Calibragem , Células Cultivadas , Ciclopentanos/metabolismo , Etilenos/metabolismo , Sistemas On-Line , Oxirredução , Oxigênio/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Salicilatos/metabolismo
12.
BMC Plant Biol ; 16: 48, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912131

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MPK) cascades are important to cellular signaling in eukaryotes. They regulate growth, development and the response to environmental challenges. MPK cascades function via reversible phosphorylation of cascade components, MEKK, MEK, and MPK, but also by MPK substrate phosphorylation. Using mass spectrometry, we previously identified many in vivo MPK3 and MPK6 substrates in Arabidopsis thaliana, and we disclosed their phosphorylation sites. RESULTS: We verified phosphorylation of several of our previously identified MPK3/6 substrates using a nonradioactive in vitro labeling assay. We engineered MPK3, MPK4, and MPK6 to accept bio-orthogonal ATPγS analogs for thiophosphorylating their appropriate substrate proteins. Subsequent alkylation of the thiophosphorylated amino acid residue(s) allows immunodetection using thiophosphate ester-specific antibodies. Site-directed mutagenesis of amino acids confirmed the protein substrates' site-specific phosphorylation by MPK3 and MPK6. A combined assay with MPK3, MPK6, and MPK4 revealed substrate specificity of the individual kinases. CONCLUSION: Our work demonstrates that the in vitro-labeling assay represents an effective, specific and highly sensitive test for determining kinase-substrate relationships.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Especificidade por Substrato
13.
Plant Biotechnol J ; 14(2): 699-708, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26096357

RESUMO

Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença , Técnicas de Transferência de Genes , Glycine max/genética , Glycine max/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Genótipo , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Especificidade da Espécie
14.
New Phytol ; 209(1): 294-306, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26315018

RESUMO

Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Calmodulina/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Processamento de Proteína Pós-Traducional , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Calmodulina/genética , Phakopsora pachyrhizi/fisiologia , Fosforilação , Doenças das Plantas/microbiologia , Estrutura Terciária de Proteína
15.
BMC Plant Biol ; 15: 282, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608728

RESUMO

BACKGROUND: In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. RESULTS: This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin secretion as evaluated by fluorescence spectroscopy. CONCLUSIONS: RAMOS noninvasively determines the OTR as a measure of the metabolic activity of plant cells. Chemical enhancement of oxygen consumption by salicylic derivatives in parsley cell suspension cultures correlates with the induction of the primed state of enhanced defense that enhances the quantity of Pep13-induced furanocoumarin phytoalexins. Treatment with the priming-active compounds methyl jasmonate and pyraclostrobin also resulted in an enhanced respiration activity. Thus, RAMOS is a novel technology for identifying priming-inducing compounds for agriculture.


Assuntos
Oxigênio/metabolismo , Petroselinum/imunologia , Proteção de Cultivos , Imunidade Inata , Petroselinum/metabolismo , Células Vegetais/imunologia , Células Vegetais/metabolismo
16.
Mol Cell Proteomics ; 12(2): 369-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23172892

RESUMO

Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)(3)-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO(2)-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Hidróxido de Alumínio , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cromatografia de Afinidade/métodos , Cromatografia Líquida , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Mapeamento de Interação de Proteínas , Proteoma/química , Proteoma/genética , Transdução de Sinais , Especificidade por Substrato , Espectrometria de Massas em Tandem , Titânio
17.
Sci Rep ; 14(1): 3489, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347062

RESUMO

Following localized infection, the entire plant foliage becomes primed for enhanced defense. However, specific genes induced during defense priming (priming-marker genes) and those showing increased expression in defense-primed plants upon rechallenge (priming-readout genes) remain largely unknown. In our Arabidopsis thaliana study, genes AT1G76960 (function unknown), CAX3 (encoding a vacuolar Ca2+/H+ antiporter), and CRK4 (encoding a cysteine-rich receptor-like protein kinase) were strongly expressed during Pseudomonas cannabina pv. alisalensis-induced defense priming, uniquely marking the primed state for enhanced defense. Conversely, PR1 (encoding a pathogenesis-related protein), RLP23 and RLP41 (both encoding receptor-like proteins) were similarly activated in defense-primed plants before and after rechallenge, suggesting they are additional marker genes for defense priming. In contrast, CASPL4D1 (encoding Casparian strip domain-like protein 4D1), FRK1 (encoding flg22-induced receptor-like kinase), and AT3G28510 (encoding a P loop-containing nucleoside triphosphate hydrolases superfamily protein) showed minimal activation in uninfected, defense-primed, or rechallenged plants, but intensified in defense-primed plants after rechallenge. Notably, mutation in only priming-readout gene NHL25 (encoding NDR1/HIN1-like protein 25) impaired both defense priming and systemic acquired resistance, highlighting its previously undiscovered pivotal role in systemic plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Pseudomonas syringae/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Receptores de Superfície Celular/metabolismo
18.
New Phytol ; 198(2): 536-545, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23356583

RESUMO

Nonhost resistance (NHR) of plants to fungal pathogens comprises different defense layers. Epidermal penetration resistance of Arabidopsis to Phakopsora pachyrhizi requires functional PEN1, PEN2 and PEN3 genes, whereas post-invasion resistance in the mesophyll depends on the combined functionality of PEN2, PAD4 and SAG101. Other genetic components of Arabidopsis post-invasion mesophyll resistance remain elusive. We performed comparative transcriptional profiling of wild-type, pen2 and pen2 pad4 sag101 mutants after inoculation with P. pachyrhizi to identify a novel trait for mesophyll NHR. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis and microscopic analysis confirmed the essential role of the candidate gene in mesophyll NHR. UDP-glucosyltransferase UGT84A2/bright trichomes 1 (BRT1) is a novel component of Arabidopsis mesophyll NHR to P. pachyrhizi. BRT1 is a putative cytoplasmic enzyme in phenylpropanoid metabolism. BRT1 is specifically induced in pen2 with post-invasion resistance to P. pachyrhizi. Silencing or mutation of BRT1 increased haustoria formation in pen2 mesophyll. Yet, the brt1 mutation did not affect NHR to P. pachyrhizi in wild-type plants. We assign a novel function to BRT1, which is important for post-invasion NHR of Arabidopsis to P. pachyrhizi. BRT1 might serve to confer durable resistance against P. pachyrhizi to soybean.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Basidiomycota/fisiologia , Resistência à Doença/imunologia , Glucosiltransferases/metabolismo , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ásia , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genótipo , Glucosiltransferases/genética , Interações Hospedeiro-Patógeno/imunologia , Malatos/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/microbiologia , Mutação/genética , Fenilpropionatos/metabolismo , Epiderme Vegetal/enzimologia , Epiderme Vegetal/microbiologia , Interferência de RNA
19.
EMBO Rep ; 12(1): 50-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21132017

RESUMO

Priming of defence genes for amplified response to secondary stress can be induced by application of the plant hormone salicylic acid or its synthetic analogue acibenzolar S-methyl. In this study, we show that treatment with acibenzolar S-methyl or pathogen infection of distal leaves induce chromatin modifications on defence gene promoters that are normally found on active genes, although the genes remain inactive. This is associated with an amplified gene response on challenge exposure to stress. Mutant analyses reveal a tight correlation between histone modification patterns and gene priming. The data suggest a histone memory for information storage in the plant stress response.


Assuntos
Arabidopsis/fisiologia , Cromatina/metabolismo , Estresse Fisiológico , Acetilação , Arabidopsis/genética , Arabidopsis/microbiologia , Cromatina/química , Histonas/metabolismo , Metilação , Imunidade Vegetal , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Pseudomonas syringae , Tiadiazóis/farmacologia , Fatores de Transcrição/genética , Transcrição Gênica
20.
Nat Commun ; 14(1): 1835, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005409

RESUMO

With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Elementos de DNA Transponíveis/genética , Glycine max/genética , Glycine max/microbiologia , Ecossistema , Basidiomycota/genética , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA