Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 84(6): 1021-1035.e11, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38359823

RESUMO

In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.


Assuntos
Metilação de DNA , RNA de Interação com Piwi , Masculino , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas/metabolismo , Células Germinativas/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , Mamíferos/metabolismo
2.
Mol Cell ; 81(4): 845-858.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33406384

RESUMO

Mammalian genomes contain long domains with distinct average compositions of A/T versus G/C base pairs. In a screen for proteins that might interpret base composition by binding to AT-rich motifs, we identified the stem cell factor SALL4, which contains multiple zinc fingers. Mutation of the domain responsible for AT binding drastically reduced SALL4 genome occupancy and prematurely upregulated genes in proportion to their AT content. Inactivation of this single AT-binding zinc-finger cluster mimicked defects seen in Sall4 null cells, including precocious differentiation of embryonic stem cells (ESCs) and embryonic lethality in mice. In contrast, deletion of two other zinc-finger clusters was phenotypically neutral. Our data indicate that loss of pluripotency is triggered by downregulation of SALL4, leading to de-repression of a set of AT-rich genes that promotes neuronal differentiation. We conclude that base composition is not merely a passive byproduct of genome evolution and constitutes a signal that aids control of cell fate.


Assuntos
Composição de Bases , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Camundongos , Camundongos Mutantes , Células-Tronco Embrionárias Murinas/citologia , Mutação , Neurônios/citologia , Fatores de Transcrição/genética , Regulação para Cima , Dedos de Zinco
3.
Nature ; 584(7822): 635-639, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32674113

RESUMO

In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge: the need to erase and reset genomic methylation1. In the male germline, RNA-directed DNA methylation silences young, active transposable elements2-4. The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of transposable elements3,5. piRNAs are proposed to tether MIWI2 to nascent transposable element transcripts; however, the mechanism by which MIWI2 directs the de novo methylation of transposable elements is poorly understood, although central to the immortality of the germline. Here we define the interactome of MIWI2 in mouse fetal gonocytes undergoing de novo genome methylation and identify a previously unknown MIWI2-associated factor, SPOCD1, that is essential for the methylation and silencing of young transposable elements. The loss of Spocd1 in mice results in male-specific infertility but does not affect either piRNA biogenesis or the localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein whose expression is restricted to the period of de novo genome methylation. It co-purifies in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery, as well as with constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent transposable element transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through SPOCD1. In summary, we have identified a previously unrecognized and essential executor of mammalian piRNA-directed DNA methylation.


Assuntos
Metilação de DNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Montagem e Desmontagem da Cromatina , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Elementos de DNA Transponíveis/genética , Feminino , Fertilidade/genética , Inativação Gênica , Genes de Partícula A Intracisternal/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Camundongos , RNA Interferente Pequeno/biossíntese , Espermatogênese/genética
4.
RNA ; 29(10): 1471-1480, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433650

RESUMO

RNA-directed transposon silencing operates in the mammalian soma and germline to safeguard genomic integrity. The piRNA pathway and the HUSH complex identify active transposons through recognition of their nascent transcripts, but mechanistic understanding of how these distinct pathways evolved is lacking. TASOR is an essential component of the HUSH complex. TASOR's DUF3715 domain adopts a pseudo-PARP structure and is required for transposon silencing in a manner independent of complex assembly. TEX15, an essential piRNA pathway factor, also contains the DUF3715 domain. Here, we show that TASOR's and TEX15's DUF3715 domain share extensive structural homology. We found that the DUF3715 domain arose in early eukaryotes and that in vertebrates it is restricted to TEX15, TASOR, and TASORB orthologs. While TASOR-like proteins are found throughout metazoa, TEX15 is vertebrate-specific. The branching of TEX15 and the TASOR-like DUF3715 domain likely occurred in early metazoan evolution. Remarkably, despite this vast evolutionary distance, the DUF3715 domain from divergent TEX15 sequences can functionally substitute the DUF3715 domain of TASOR and mediates transposon silencing. We have thus termed this domain of unknown function as the RNA-directed pseudo-PARP transposon silencing (RDTS) domain. In summary, we show an unexpected functional link between these critical transposon silencing pathways.


Assuntos
Proteínas de Drosophila , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Interferência de RNA , Genoma , Proteínas Argonautas/genética , RNA de Interação com Piwi , Mamíferos/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética
5.
Nucleic Acids Res ; 51(12): 6411-6429, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144502

RESUMO

Proteins containing DZF (domain associated with zinc fingers) modules play important roles throughout gene expression, from transcription to translation. Derived from nucleotidyltransferases but lacking catalytic residues, DZF domains serve as heterodimerization surfaces between DZF protein pairs. Three DZF proteins are widely expressed in mammalian tissues, ILF2, ILF3 and ZFR, which form mutually exclusive ILF2-ILF3 and ILF2-ZFR heterodimers. Using eCLIP-Seq, we find that ZFR binds across broad intronic regions to regulate the alternative splicing of cassette and mutually exclusive exons. ZFR preferentially binds dsRNA in vitro and is enriched on introns containing conserved dsRNA elements in cells. Many splicing events are similarly altered upon depletion of any of the three DZF proteins; however, we also identify independent and opposing roles for ZFR and ILF3 in alternative splicing regulation. Along with widespread involvement in cassette exon splicing, the DZF proteins control the fidelity and regulation of over a dozen highly validated mutually exclusive splicing events. Our findings indicate that the DZF proteins form a complex regulatory network that leverages dsRNA binding by ILF3 and ZFR to modulate splicing regulation and fidelity.


Assuntos
Processamento Alternativo , Splicing de RNA , Animais , Íntrons/genética , Éxons/genética , Nucleotidiltransferases , Mamíferos
6.
Nucleic Acids Res ; 50(5): 2923-2937, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34302485

RESUMO

Ssd1, a conserved fungal RNA-binding protein, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and likely suppresses translation of bound mRNAs. Previous studies identified RNA motifs enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not defined. Here, we identify precise binding sites of Ssd1 on RNA using in vivo cross-linking and cDNA analysis. These sites are enriched in 5' untranslated regions of a subset of mRNAs encoding cell wall proteins. We identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. Active RNase II enzymes have a characteristic, internal RNA binding path; the Ssd1 crystal structure at 1.9 Å resolution shows that remnants of regulatory sequences block this path. Instead, RNA binding activity has relocated to a conserved patch on the surface of the protein. Structure-guided mutations of this surface prevent Ssd1 from binding RNA in vitro and phenocopy Ssd1 deletion in vivo. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory and binding elements in the RNase II family.


Assuntos
Exorribonucleases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regiões 5' não Traduzidas , Exorribonucleases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Biol Evol ; 38(5): 1837-1846, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33313834

RESUMO

The RNase II family of 3'-5' exoribonucleases is present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases." The latter function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. However, the evolutionary origins of these pseudonucleases are unknown: What sequence of events led to their novel function, and when did these events occur? Here, we show how RNase II pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. In contrast, N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the nonnuclease function requires these regions. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages. This phenotype of C. neoformans Ssd1/Dis3L2 deletion is consistent with those of inactive fungal pseudonucleases, yet the protein retains an active site sequence signature. We propose that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, whereas the RNase activity was lost repeatedly in independent lineages.


Assuntos
Ascomicetos/genética , Evolução Molecular , Exorribonucleases/genética , Família Multigênica , Ascomicetos/enzimologia , Domínio Catalítico/genética , Cryptococcus neoformans/fisiologia , Citocinese , Filogenia , Proteínas de Saccharomyces cerevisiae/genética
8.
Proc Natl Acad Sci U S A ; 114(16): E3243-E3250, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28348241

RESUMO

Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. The majority of RTT missense mutations disrupt the interaction of the MeCP2 with DNA or the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid receptors (SMRT) corepressor complex. Here, we show that the "NCoR/SMRT interaction domain" (NID) of MeCP2 directly contacts transducin beta-like 1 (TBL1) and TBL1 related (TBLR1), two paralogs that are core components of NCoR/SMRT. We determine the cocrystal structure of the MeCP2 NID in complex with the WD40 domain of TBLR1 and confirm by in vitro and ex vivo assays that mutation of interacting residues of TBLR1 and TBL1 disrupts binding to MeCP2. Strikingly, the four MeCP2-NID residues mutated in RTT are those residues that make the most extensive contacts with TBLR1. Moreover, missense mutations in the gene for TBLR1 that are associated with intellectual disability also prevent MeCP2 binding. Our study therefore reveals the molecular basis of an interaction that is crucial for optimal brain function.


Assuntos
Proteína 2 de Ligação a Metil-CpG/química , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Receptores Citoplasmáticos e Nucleares/química , Proteínas Repressoras/química , Síndrome de Rett/genética , Cristalografia por Raios X , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Síndrome de Rett/patologia , Transducina/química , Transducina/genética , Transducina/metabolismo
9.
Mol Cell ; 37(2): 211-22, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20122403

RESUMO

Mago and Y14 are core components of the exon junction complex (EJC), an assembly central to nonsense-mediated mRNA decay in humans and mRNA localization in flies. The Mago-Y14 heterodimer shuttles between the nucleus, where it is loaded onto specific mRNAs, and the cytoplasm, where it functions in translational regulation. The heterodimer is imported back into the nucleus by Importin 13 (Imp13), a member of the karyopherin-beta family of transport factors. We have elucidated the structural basis of the Mago-Y14 nuclear import cycle. The 3.35 A structure of the Drosophila Imp13-Mago-Y14 complex shows that Imp13 forms a ring-like molecule, reminiscent of Crm1, and encircles the Mago-Y14 cargo with a conserved interaction surface. The 2.8 A structure of human Imp13 bound to RanGTP reveals how Mago-Y14 is released in the nucleus by a steric hindrance mechanism. Comparison of the two structures suggests how this unusual karyopherin might function in bidirectional nucleocytoplasmic transport.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Drosophila/química , Drosophila/metabolismo , Carioferinas/química , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Humanos , Carioferinas/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Alinhamento de Sequência , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo
10.
Nucleic Acids Res ; 44(4): 1924-36, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26712564

RESUMO

Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs.


Assuntos
Adenosina Desaminase/química , Complexos Multiproteicos/química , Proteínas do Fator Nuclear 90/química , Proteínas de Ligação a RNA/química , Adenosina Desaminase/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos/genética , Proteínas do Fator Nuclear 90/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
11.
Nucleic Acids Res ; 42(19): 12138-54, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25200078

RESUMO

Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high-throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3' major domain of the 20S pre-ribosomal RNA.


Assuntos
Precursores de RNA/química , RNA Ribossômico/química , Subunidades Ribossômicas Menores de Eucariotos/química , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Modelos Estatísticos , Conformação de Ácido Nucleico , Nucleotídeos/química , Precursores de RNA/isolamento & purificação , RNA Ribossômico/isolamento & purificação , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA
12.
Nature ; 461(7260): 60-5, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19680239

RESUMO

Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte de RNA , RNA de Transferência/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo
13.
Nucleic Acids Res ; 40(18): 9356-68, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22833610

RESUMO

Nuclear factors NF90 and NF45 form a complex involved in a variety of cellular processes and are thought to affect gene expression both at the transcriptional and translational level. In addition, this complex affects the replication of several viruses through direct interactions with viral RNA. NF90 and NF45 dimerize through their common 'DZF' domain (domain associated with zinc fingers). NF90 has additional double-stranded RNA-binding domains that likely mediate its association with target RNAs. We present the crystal structure of the NF90/NF45 dimerization complex at 1.9-Å resolution. The DZF domain shows structural similarity to the template-free nucleotidyltransferase family of RNA modifying enzymes. However, both NF90 and NF45 have lost critical catalytic residues during evolution and are therefore not functional enzymes. Residues on NF90 that make up its interface with NF45 are conserved in two related proteins, spermatid perinuclear RNA-binding protein (SPNR) and zinc-finger RNA-binding protein (Zfr). Using a co-immunoprecipitation assay and site-specific mutants, we demonstrate that NF45 is also able to recognize SPNR and Zfr through the same binding interface, revealing that NF45 is able to form a variety of cellular complexes with other DZF-domain proteins.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/química , Proteínas do Fator Nuclear 90/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Dimerização , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Nucleotídeos/metabolismo , Nucleotidiltransferases/química , Polinucleotídeo Adenililtransferase/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635047

RESUMO

Spalt-like 4 (SALL4) maintains vertebrate embryonic stem cell identity and is required for the development of multiple organs, including limbs. Mutations in SALL4 are associated with Okihiro syndrome, and SALL4 is also a known target of thalidomide. SALL4 protein has a distinct preference for AT-rich sequences, recognised by a pair of zinc fingers at the C-terminus. However, unlike many characterised zinc finger proteins, SALL4 shows flexible recognition with many different combinations of AT-rich sequences being targeted. SALL4 interacts with the NuRD corepressor complex which potentially mediates repression of AT-rich genes. We present a crystal structure of SALL4 C-terminal zinc fingers with an AT-rich DNA sequence, which shows that SALL4 uses small hydrophobic and polar side chains to provide flexible recognition in the major groove. Missense mutations reported in patients that lie within the C-terminal zinc fingers reduced overall binding to DNA but not the preference for AT-rich sequences. Furthermore, these mutations altered association of SALL4 with AT-rich genomic sites, providing evidence that these mutations are likely pathogenic.


Assuntos
Síndrome da Retração Ocular , Fatores de Transcrição , Humanos , Síndrome da Retração Ocular/genética , Síndrome da Retração Ocular/metabolismo , Síndrome da Retração Ocular/patologia , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
15.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
16.
J Mol Biol ; 434(9): 167529, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257783

RESUMO

Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.


Assuntos
Proteínas de Ligação a DNA , Genes Reguladores , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Humanos , Filogenia
17.
Nat Commun ; 7: 11789, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250689

RESUMO

Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits.


Assuntos
Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
FEBS J ; 272(6): 1511-22, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15752366

RESUMO

Phosphorylase kinase (PhK) is a large hexadecameric enzyme consisting of four copies of four subunits: (alphabetagammadelta)4. An intrinsic calmodulin (CaM, the delta subunit) binds directly to the gamma protein kinase chain. The interaction site of CaM on gamma has been localized to a C-terminal extension of the kinase domain. Two 25-mer peptides derived from this region, PhK5 and PhK13, were identified previously as potential CaM-binding sites. Complex formation between Ca2+/CaM with these two peptides was characterized using analytical gel filtration and NMR methods. NMR chemical shift perturbation studies showed that while PhK5 forms a robust complex with Ca2+/CaM, no interactions with PhK13 were observed. 15N relaxation characteristics of Ca2+/CaM and Ca2+/CaM/PhK5 complexes were compared with the experimentally determined structures of several Ca2+/CaM/peptide complexes. Good fits were observed between Ca2+/CaM/PhK5 and three structures: Ca2+/CaM complexes with peptides from endothelial nitric oxide synthase, with smooth muscle myosin light chain kinase and CaM kinase I. We conclude that the PhK5 site is likely to have a direct role in Ca2+-regulated control of PhK activity through the formation of a classical 'compact' CaM complex.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Fosforilase Quinase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilase Quinase/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
19.
Mol Cell Biol ; 35(20): 3491-503, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240280

RESUMO

The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits.


Assuntos
Proteína do Fator Nuclear 45/fisiologia , Proteínas do Fator Nuclear 90/fisiologia , Proteínas Ribossômicas/biossíntese , Nucléolo Celular/metabolismo , Forma do Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
20.
Curr Biol ; 22(4): 296-301, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22281223

RESUMO

Defects in chromosome segregation result in aneuploidy, which can lead to disease or cell death [1, 2]. The spindle checkpoint delays anaphase onset until all chromosomes are attached to spindle microtubules in a bipolar fashion [3, 4]. Mad2 is a key checkpoint component that undergoes conformational activation, catalyzed by a Mad1-Mad2 template enriched at unattached kinetochores [5]. Mad2 and Mad3 (BubR1) then bind and inhibit Cdc20 to form the mitotic checkpoint complex (MCC), which binds and inhibits the anaphase promoting complex (APC/C). Checkpoint kinases (Aurora, Bub1, and Mps1) are critical for checkpoint signaling, yet they have poorly defined roles and few substrates have been identified [6-8]. Here we demonstrate that a kinase-dead allele of the fission yeast MPS1 homolog (Mph1) is checkpoint defective and that levels of APC/C-associated Mad2 and Mad3 are dramatically reduced in this mutant. Thus, MCC binding to fission yeast APC/C is dependent on Mph1 kinase activity. We map and mutate several phosphorylation sites in Mad2, producing mutants that display reduced Cdc20-APC/C binding and an inability to maintain checkpoint arrest. We conclude that Mph1 kinase regulates the association of Mad2 with its binding partners and thereby mitotic arrest.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Anáfase , Ciclossomo-Complexo Promotor de Anáfase , Aurora Quinases , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2 , Espectrometria de Massas , Proteínas Nucleares/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA