Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochemistry ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259676

RESUMO

α-l-(3'-2')-Threofuranosyl nucleic acid (TNA) pairs with itself, cross-pairs with DNA and RNA, and shows promise as a tool in synthetic genetics, diagnostics, and oligonucleotide therapeutics. We studied in vitro primer insertion and extension reactions catalyzed by human trans-lesion synthesis (TLS) DNA polymerase η (hPol η) opposite a TNA-modified template strand without and in combination with O4-alkyl thymine lesions. Across TNA-T (tT), hPol η inserted mostly dAMP and dGMP, dTMP and dCMP with lower efficiencies, followed by extension of the primer to a full-length product. hPol η inserted dAMP opposite O4-methyl and -ethyl analogs of tT, albeit with reduced efficiencies relative to tT. Crystal structures of ternary hPol η complexes with template tT and O4-methyl tT at the insertion and extension stages demonstrated that the shorter backbone and different connectivity of TNA compared to DNA (3' → 2' versus 5' → 3', respectively) result in local differences in sugar orientations, adjacent phosphate spacings, and directions of glycosidic bonds. The 3'-OH of the primer's terminal thymine was positioned at 3.4 Å on average from the α-phosphate of the incoming dNTP, consistent with insertion opposite and extension past the TNA residue by hPol η. Conversely, the crystal structure of a ternary hPol η·DNA·tTTP complex revealed that the primer's terminal 3'-OH was too distant from the tTTP α-phosphate, consistent with the inability of the polymerase to incorporate TNA. Overall, our study provides a better understanding of the tolerance of a TLS DNA polymerase vis-à-vis unnatural nucleotides in the template and as the incoming nucleoside triphosphate.

2.
Bioconjug Chem ; 34(6): 972-976, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37196003

RESUMO

A new fluorescent cytosine analog "tsC" containing a trans-stilbene moiety was synthesized and incorporated into hemiprotonated base pairs that comprise i-motif structures. Unlike previously reported fluorescent base analogs, tsC mimics the acid-base properties of cytosine (pKa ≈ 4.3) while exhibiting bright (ε × Φ ≈ 1000 cm-1 M-1) and red-shifted fluorescence (λem = 440 → 490 nm) upon its protonation in the water-excluded interface of tsC+:C base pairs. Ratiometric analyses of tsC emission wavelengths facilitate real-time tracking of reversible conversions between single-stranded, double-stranded, and i-motif structures derived from the human telomeric repeat sequence. Comparisons between local changes in tsC protonation with global structure changes according to circular dichroism suggest partial formation of hemiprotonated base pairs in the absence of global i-motif structures at pH = 6.0. In addition to providing a highly fluorescent and ionizable cytosine analog, these results suggest that hemiprotonated C+:C base pairs can form in partially folded single-stranded DNA in the absence of global i-motif structures.


Assuntos
Citosina , Humanos , Concentração de Íons de Hidrogênio , Citosina/química , Sequência de Bases , Pareamento de Bases , Dicroísmo Circular , Conformação de Ácido Nucleico
3.
Chembiochem ; 22(13): 2237-2246, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506614

RESUMO

The chemical and self-assembly properties of nucleic acids make them ideal for the construction of discrete structures and stimuli-responsive devices for a diverse array of applications. Amongst the various three-dimensional assemblies, DNA tetrahedra are of particular interest, as these structures have been shown to be readily taken up by the cell, by the process of caveolin-mediated endocytosis, without the need for transfection agents. Moreover, these structures can be readily modified with a diverse range of pendant groups to confer greater functionality. This minireview highlights recent advances related to applications of this interesting DNA structure including the delivery of therapeutic agents ranging from small molecules to oligonucleotides in addition to its use for sensing and imaging various species within the cell.


Assuntos
Técnicas Biossensoriais , DNA/química , Nanoestruturas/química , Nanotecnologia , Oligonucleotídeos/química , Bibliotecas de Moléculas Pequenas/química , Animais , Humanos
4.
Chemistry ; 26(65): 14802-14806, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32543755

RESUMO

Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.


Assuntos
Reparo do DNA , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA , Humanos , O(6)-Metilguanina-DNA Metiltransferase/farmacocinética
5.
Nucleic Acids Res ; 45(17): 10321-10331, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973475

RESUMO

Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2'-deoxyribose, 2'-O-methyl-ribose, 2'-deoxy-2'-fluoro-ribose, arabinose and 2'-deoxy-2'-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2' modifications gave a variety of effects. Arabinose and 2'-deoxy-2'-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2'-O-methyl and 2'-deoxy-2'-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability.


Assuntos
Pentoses/química , RNA de Cadeia Dupla/química , RNA Mensageiro/química , Pareamento de Bases , Cristalografia por Raios X , Desoxirribose/química , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Estabilidade de RNA , Temperatura , Água
6.
Chembiochem ; 19(6): 575-582, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29243336

RESUMO

Oligonucleotides containing various adducts, including ethyl, benzyl, 4-hydroxybutyl and 7-hydroxyheptyl groups, at the O4 atom of 5-fluoro-O4 -alkyl-2'-deoxyuridine were prepared by solid-phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5-fluoro-2'-deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B-form DNA structure. O6 -Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5-fluoro-O4 -benzyl-2'-deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4 -ethyl and benzyl adducts of 5-fluoro-2-deoxyuridine. Computational assessment of N1-methyl analogues of the O4 -alkylated nucleobases revealed that the C5-fluorine modification had an influence on reducing the electron density of the O4 -Cα bond, relative to thymine (C5-methyl) and uracil (C5-hydrogen). These results reveal the positive influence of the C5-fluorine atom on the repair of larger O4 -alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.


Assuntos
Desoxiuridina/metabolismo , Flúor/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Humanos , Conformação Molecular , Teoria Quântica
7.
Org Biomol Chem ; 16(46): 9053-9058, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30430154

RESUMO

O 6-Alkylguanine DNA alkyltransferases (AGTs) are proteins found in most organisms whose role is to remove alkylation damage from the O6- and O4-positions of 2'-deoxyguanosine (dG) and thymidine (dT), respectively. Variations in active site residues between AGTs from different organisms leads to differences in repair proficiency: The human variant (hAGT) has a proclivity for removal of alkyl groups at the O6-position of guanine and the E. coli OGT protein has activity towards the O4-position of thymine. A chimeric protein (hOGT) that our laboratory has engineered with twenty of the active site residues mutated in hAGT to those found in OGT, exhibited activity towards a broader range of substrates relative to native OGT. Among the substrates that the hOGT protein was found to act upon was interstrand cross-linked DNA connected by an alkylene linkage at the O6-position of dG to the complementary strand. In the present study the activity of hOGT towards DNA containing alkylene intrastrand cross-links (IaCL) at the O6- and O4-positions respectively of dG and dT, which lack a phosphodiester linkage between the connected residues, was evaluated. The hOGT protein exhibited proficiency at removal of an alkylene linkage at the O6-atom of dG but the O4-position of dT was refractory to protein activity. The activity of the chimeric hOGT protein towards these IaCLs to prepare well defined DNA-protein cross-linked conjugates will enable mechanistic and high resolution structural studies to address the differences observed in the repair adeptness of O4-alkylated dT by the OGT protein relative to other AGT variants.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Engenharia de Proteínas/métodos , Domínio Catalítico , Reparo do DNA , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Especificidade por Substrato
8.
Chem Commun (Camb) ; 60(9): 1156-1159, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38190113

RESUMO

Alkylation at the O6 position of guanine is a common and highly mutagenic form of DNA damage. Direct repair of O6-alkylguanines by the "suicide" enzyme O6-methylguanine DNA methyltransferase (MGMT, AGT, AGAT) maintains genome stability and inhibits carcinogenesis. In this study, a fluorescent analogue of thymidine containing trans-stilbene (tsT) is quenched by O6-methylguanine residues in the opposite strand of DNA by molecular dynamics that propagate through the duplex with as much as ∼9 Šof separation. Increased fluorescence of tsT or the cytosine analogue tsC resulting from MGMT-mediated DNA repair were distinguishable from non-covalent DNA-protein binding following protease digest. To our knowledge, this is the first study utilizing molecular rotor base analogues to detect DNA damage and repair activities in duplex DNA.


Assuntos
Reparo do DNA , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA