Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946588

RESUMO

Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear ß-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal ß-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of ß-catenin have been implicated in dorsal ß-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early ß-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas Wnt , Proteínas de Xenopus , Xenopus laevis , beta Catenina , Animais , Padronização Corporal/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Ligantes , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , beta Catenina/genética
2.
Genesis ; 59(12): e23453, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34664392

RESUMO

The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Anormalidades Congênitas/genética , Perda Auditiva/genética , Proteínas de Homeodomínio/genética , Proteínas de Xenopus/genética , Animais , Região Branquial/crescimento & desenvolvimento , Região Branquial/patologia , Síndrome Brânquio-Otorrenal/fisiopatologia , Sistemas CRISPR-Cas/genética , Anormalidades Congênitas/patologia , Desenvolvimento Embrionário/genética , Gânglios Parassimpáticos/crescimento & desenvolvimento , Gânglios Parassimpáticos/patologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Perda Auditiva/fisiopatologia , Humanos , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/patologia , Crânio/crescimento & desenvolvimento , Crânio/patologia , Fatores de Transcrição/genética , Xenopus/genética , Xenopus/crescimento & desenvolvimento
3.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352410

RESUMO

Nager syndrome is a rare craniofacial and limb disorder characterized by midface retrusion, micrognathia, absent thumbs, and radial hypoplasia. This disorder results from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4) a component of the pre-mRNA spliceosomal machinery. The spliceosome is a complex of RNA and proteins that function together to remove introns and join exons from transcribed pre-mRNA. While the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager syndrome - are cell/tissue-specific in their pathology. In Nager syndrome patients, it is the neural crest (NC)-derived craniofacial skeletal structures that are primarily affected. To understand the pathomechanism underlying this condition, we generated a Xenopus tropicalis sf3b4 mutant line using the CRISPR/Cas9 gene editing technology. Here we describe the sf3b4 mutant phenotype at neurula, tail bud, and tadpole stages, and performed temporal RNA-sequencing analysis to characterize the splicing events and transcriptional changes underlying this phenotype. Our data show that while loss of one copy of sf3b4 is largely inconsequential in Xenopus tropicalis, homozygous deletion of sf3b4 causes major splicing defects and massive gene dysregulation, which disrupt cranial NC cell migration and survival, thereby pointing at an essential role of Sf3b4 in craniofacial development.

4.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229132

RESUMO

Cranial neural crest (CNC) cells are key stem cells that contribute to most of the facial structures in all vertebrates. Previous work has shown that multiple ADAM (A Disintegrin And Metalloprotease) cell surface metalloproteases are essential for the induction and migration of the CNC in multiple vertebrate animal models. In Xenopus, we have shown that Adam13 associates with the transcription factor Arid3a to regulate gene expression. Here we show that Adam13 regulates gene expression by modulating Histone modifications globally in the CNC. Furthermore, we show that Arid3a binding to the tfap2a; promoter depends on the presence of Adam13. This association promotes the expression of one tfap2a; variant predominantly expressed in the CNC that uniquely activates the expression of calpain-8, a gene critical for CNC migration. This tfap2a; variant selectively associates with proteins involved with mRNA splicing, a function that is critically affected by the loss of Adam13 in the CNC. Our results suggest that ADAM metalloproteases may act as sensors of the environment that can modulate chromatin availability, leading to changes in gene expression and splicing.

5.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066355

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or "discs", located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called "incisures". The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.

6.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449984

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.


Assuntos
Rodopsina , Segmento Externo da Célula Bastonete , Animais , Camundongos , Rodopsina/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA