RESUMO
AIMS: Impairment of blood-brain barrier (BBB) is involved in numerous neurological diseases from developmental to aging stages. Reliable imaging of increased BBB permeability is therefore crucial for basic research and preclinical studies. Today, the analysis of extravasation of exogenous dyes is the principal method to study BBB leakage. However, these procedures are challenging to apply in pups and embryos and may appear difficult to interpret. Here we introduce a novel approach based on agonist-induced internalization of a neuronal G protein-coupled receptor widely distributed in the mammalian brain, the somatostatin receptor type 2 (SST2). METHODS: The clinically approved SST2 agonist octreotide (1 kDa), when injected intraperitoneally does not cross an intact BBB. At sites of BBB permeability, however, OCT extravasates and induces SST2 internalization from the neuronal membrane into perinuclear compartments. This allows an unambiguous localization of increased BBB permeability by classical immunohistochemical procedures using specific antibodies against the receptor. RESULTS: We first validated our approach in sensory circumventricular organs which display permissive vascular permeability. Through SST2 internalization, we next monitored BBB opening induced by magnetic resonance imaging-guided focused ultrasound in murine cerebral cortex. Finally, we proved that after intraperitoneal agonist injection in pregnant mice, SST2 receptor internalization permits analysis of BBB integrity in embryos during brain development. CONCLUSIONS: This approach provides an alternative and simple manner to assess BBB dysfunction and development in different physiological and pathological conditions.
Assuntos
Barreira Hematoencefálica/patologia , Permeabilidade Capilar , Imuno-Histoquímica/métodos , Receptores de Somatostatina/análise , Receptores de Somatostatina/metabolismo , Animais , Anticorpos Monoclonais , Camundongos , Camundongos Endogâmicos C57BL , Octreotida/metabolismo , Ratos , Ratos WistarRESUMO
BACKGROUND AND PURPOSE: Activation of poly(ADP-ribose) polymerase (PARP) is deleterious during cerebral ischemia. We assessed the influence of PARP activation induced by cerebral ischemia on the synthesis of proinflammatory mediators including the cytokines, tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) and the adhesion molecules, E-selectin and intercellular adhesion molecule-1 (ICAM-1). EXPERIMENTAL APPROACH: Ischemia was induced by intravascular occlusion of the left middle cerebral artery for 1 h in male Swiss mice anaesthetized with ketamine and xylazine. The PARP inhibitor PJ34 (1.25-25 mg kg(-1)) was administered intraperitoneally 15 min before and 4 hours after, the onset of ischemia. Animals were killed 6 h or 24 h after ischemia and cerebral tissue removed for analysis. KEY RESULTS: Ischemia increased TNF-alpha protein in cerebral tissue at 6 and 24 h after ischemia. All doses of PJ34 blocked the increase in TNF-alpha at 6 h and 25 mg kg(-1) PJ34 had a sustained effect for up to 24 h. Quantitative real time polymerase chain reaction showed that PJ34 (25 mg kg(-1)) reduced the increase in TNF-alpha mRNA by 70% at 6 h. PJ34 also prevented the increase in mRNAs encoding IL-6 (-41%), E-selectin (-81%) and ICAM-1 (-54%). PJ34 (25 mg kg(-1)) reduced the infarct volume (-26%) and improved neurological deficit, 24 h after ischemia. CONCLUSIONS AND IMPLICATIONS: PJ34 inhibited the increase in the mRNAs of four inflammatory mediators, caused by cerebral ischemia. The contribution of this effect of PJ34 to neuroprotection remains to be clarified.