Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 39, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378518

RESUMO

BACKGROUND: Focal adhesion signaling involving receptor tyrosine kinases (RTK) and integrins co-controls cancer cell survival and therapy resistance. However, co-dependencies between these receptors and therapeutically exploitable vulnerabilities remain largely elusive in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS: The cytotoxic and radiochemosensitizing potential of targeting 10 RTK and ß1 integrin was determined in up to 20 3D matrix-grown HNSCC cell models followed by drug screening and patient-derived organoid validation. RNA sequencing and protein-based biochemical assays were performed for molecular characterization. Bioinformatically identified transcriptomic signatures were applied to patient cohorts. RESULTS: Fibroblast growth factor receptor (FGFR 1-4) targeting exhibited the strongest cytotoxic and radiosensitizing effects as monotherapy and combined with ß1 integrin inhibition, exceeding the efficacy of the other RTK studied. Pharmacological pan-FGFR inhibition elicited responses ranging from cytotoxicity/radiochemosensitization to resistance/radiation protection. RNA sequence analysis revealed a mesenchymal-to-epithelial transition (MET) in sensitive cell models, whereas resistant cell models exhibited a partial epithelial-to-mesenchymal transition (EMT). Accordingly, inhibition of EMT-associated kinases such as EGFR caused reduced adaptive resistance and enhanced (radio)sensitization to FGFR inhibition cell model- and organoid-dependently. Transferring the EMT-associated transcriptomic profiles to HNSCC patient cohorts not only demonstrated their prognostic value but also provided a conclusive validation of the presence of EGFR-related vulnerabilities that can be strategically exploited for therapeutic interventions. CONCLUSIONS: This study demonstrates that pan-FGFR inhibition elicits a beneficial radiochemosensitizing and a detrimental radioprotective potential in HNSCC cell models. Adaptive EMT-associated resistance appears to be of clinical importance, and we provide effective molecular approaches to exploit this therapeutically.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Integrina beta1/genética , Linhagem Celular Tumoral , Receptores Proteína Tirosina Quinases/genética , Antineoplásicos/uso terapêutico , Receptores ErbB/metabolismo , Fenótipo , Transição Epitelial-Mesenquimal/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685940

RESUMO

Constitutively active kinases play a crucial role in carcinogenesis, and their inhibition is a common target for molecular tumor therapy. We recently discovered the expression of two oncogenic isoforms of Bruton's Tyrosine Kinase (BTK) in head and neck squamous cell carcinoma (HNSCC), Btk-p80 and BTK-p65. However, the precise role of BTK in HNSCC remains unclear. Analyses of a tissue microarray containing benign and malignant as well as inflammatory tissue samples of the head and neck region revealed the preferential expression of BTK-p80 in malignant tissue, whereas BTK-p65 expression was confirmed in over 80% of analyzed metastatic head and neck tumor cases. Therefore, processes associated with metastasis, like cancer stem cell (CSC) enrichment and the epithelial-mesenchymal transition (EMT), which in turn depend on an appropriate cytokine milieu, were analyzed. Treatment of HNSCC-derived cell lines cultured under 3D conditions with the BTK inhibitor AVL-292 caused reduced sphere formation, which was accompanied by reduced numbers of ALDH1A1+ CSCs as well as biological changes associated with the EMT. Moreover, we observed reduced NF-κB expression as well as altered NF-κB dependent pro-tumorigenic and EMT-associated cytokine release of IL-6, IFNγ, and TNFα when BTK activity was dampened. Therefore, an autocrine regulation of the oncogenic BTK-dependent process in HNSCC can be suggested, with BTK inhibition expected to be an effective treatment option for HNSCC.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Humanos , Carcinogênese , Citocinas , Neoplasias de Cabeça e Pescoço/genética , Células-Tronco Neoplásicas , NF-kappa B , Carcinoma de Células Escamosas de Cabeça e Pescoço
3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362151

RESUMO

BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.


Assuntos
Neoplasias da Mama , Genes BRCA1 , Humanos , Feminino , Linhagem Celular Tumoral , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Recombinação Homóloga , Reparo do DNA/genética , Replicação do DNA , Dano ao DNA , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico
4.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019757

RESUMO

The intermediate filament synemin has been previously identified as novel regulator of cancer cell therapy resistance and DNA double strand break (DSB) repair. c-Abl tyrosine kinase is involved in both of these processes. Using PamGene technology, we performed a broad-spectrum kinase activity profiling in three-dimensionally, extracellular matrix grown head and neck cancer cell cultures. Upon synemin silencing, we identified 86 deactivated tyrosine kinases, including c-Abl, in irradiated HNSCC cells. Upon irradiation and synemin inhibition, c-Abl hyperphosphorylation on tyrosine (Y) 412 and threonine (T) 735 was significantly reduced, prompting us to hypothesize that c-Abl tyrosine kinase is an important signaling component of the synemin-mediated radioresistance pathway. Simultaneous targeting of synemin and c-Abl resulted in similar radiosensitization and DSB repair compared with single synemin depletion, suggesting synemin as an upstream regulator of c-Abl. Immunoprecipitation assays revealed a protein complex formation between synemin and c-Abl pre- and post-irradiation. Upon pharmacological inhibition of ATM, synemin/c-Abl protein-protein interactions were disrupted implying synemin function to depend on ATM kinase activity. Moreover, deletion of the SH2 domain of c-Abl demonstrated a decrease in interaction, indicating the dependency of the protein-protein interaction on this domain. Mechanistically, radiosensitization upon synemin knockdown seems to be associated with an impairment of DNA repair via regulation of non-homologous end joining independent of c-Abl function. Our data generated in more physiological 3D cancer cell culture models suggest c-Abl as further key determinant of radioresistance downstream of synemin.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Proteínas Proto-Oncogênicas c-abl/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla , DNA de Neoplasias/metabolismo , Embrião não Mamífero , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Proteínas de Filamentos Intermediários/antagonistas & inibidores , Proteínas de Filamentos Intermediários/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Raios X , Peixe-Zebra
5.
Cell Commun Signal ; 17(1): 144, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703695

RESUMO

Intercellular communication is essential for multicellular tissue vitality and homeostasis. We show that healthy cells message protective signals through direct cell-cell connections to adjacent DNA-damaged cells in a microtubule-dependent manner. In DNA-damaged cells, mitochondria restoration is facilitated by fusion with undamaged mitochondria from healthy cells and their DNA damage repair is optimized in presence of healthy cells. Both, mitochondria transfer and intercellular signaling for an enhanced DNA damage response are critically regulated by the activity of the DNA repair protein ataxia telangiectasia mutated (ATM). These healthy-to-damaged prosurvival processes sustain normal tissue integrity and may be exploitable for overcoming resistance to therapy in diseases such as cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Mitocôndrias/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Dano ao DNA , Humanos , Microtúbulos/metabolismo , Transdução de Sinais
6.
Biol Chem ; 398(7): 721-735, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28002024

RESUMO

Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.


Assuntos
Adesão Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Neoplasias/metabolismo
7.
Semin Cancer Biol ; 31: 65-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25117005

RESUMO

Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.


Assuntos
Matriz Extracelular/metabolismo , Adesões Focais , Neoplasias/metabolismo , Transdução de Sinais , Adesão Celular , Progressão da Doença , Humanos , Integrinas/metabolismo , Modelos Biológicos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia
8.
Recent Results Cancer Res ; 198: 89-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27318682

RESUMO

Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.


Assuntos
Integrinas/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Radioterapia (Especialidade)/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Anticorpos Monoclonais/uso terapêutico , Quimiorradioterapia , Humanos , Integrinas/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
9.
Biochim Biophys Acta ; 1836(2): 236-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891970

RESUMO

The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Invasividade Neoplásica
10.
Proc Natl Acad Sci U S A ; 108(2): 662-7, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21199943

RESUMO

Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23-87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain.


Assuntos
Abelhas/microbiologia , Abelhas/fisiologia , Nosema/metabolismo , Algoritmos , Animais , Variação Genética , Genótipo , Geografia , Interações Hospedeiro-Parasita , Repetições de Microssatélites , Microscopia de Contraste de Fase , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Polinização , Dinâmica Populacional
11.
Biomed Pharmacother ; 171: 116217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286037

RESUMO

Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFß, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule ß1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel ß1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.


Assuntos
Compostos de Anilina , Cromonas , Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Tiazóis , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases/metabolismo , Integrina beta1/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Classe I de Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral
12.
Neuro Oncol ; 25(4): 648-661, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219689

RESUMO

BACKGROUND: Glioblastoma (GBM) is a fast-growing primary brain tumor characterized by high invasiveness and resistance. This results in poor patient survival. Resistance is caused by many factors, including cell-extracellular matrix (ECM) interactions. Here, we addressed the role of adhesion protein integrin α2, which we identified in a high-throughput screen for novel potential targets in GBM cells treated with standard therapy consisting of temozolomide (TMZ) and radiation. METHODS: In our study, we used a range of primary/stem-like and established GBM cell models in vitro and in vivo. To identify regulatory mechanisms, we employed high-throughput kinome profiling, Western blotting, immunofluorescence staining, reporter, and activity assays. RESULTS: Our data showed that integrin α2 is overexpressed in GBM compared to normal brain and, that its deletion causes radiochemosensitization. Similarly, invasion and adhesion were significantly reduced in TMZ-irradiated GBM cell models. Furthermore, we found that integrin α2-knockdown impairs the proliferation of GBM cells without affecting DNA damage repair. At the mechanistic level, we found that integrin α2 affects the activity of activating transcription factor 1 (ATF1) and modulates the expression of extracellular signal-regulated kinase 1 (ERK1) regulated by extracellular signals. Finally, we demonstrated that integrin α2-deficiency inhibits tumor growth and thereby prolongs the survival of mice with orthotopically growing GBM xenografts. CONCLUSIONS: Taken together our data suggest that integrin α2 may be a promising target to overcome GBM resistance to radio- and chemotherapy. Thus, it would be worth evaluating how efficient and safe the adjuvant use of integrin α2 inhibitors is to standard radio(chemo)therapy in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Integrina alfa2/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/patologia , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/uso terapêutico
13.
Comput Struct Biotechnol J ; 21: 2824-2836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206618

RESUMO

Cancer presents as a highly heterogeneous disease with partly overlapping and partly distinct (epi)genetic characteristics. These characteristics determine inherent and acquired resistance, which need to be overcome for improving patient survival. In line with the global efforts in identifying druggable resistance factors, extensive preclinical research of the Cordes lab and others designated the cancer adhesome as a critical and general therapy resistance mechanism with multiple druggable cancer targets. In our study, we addressed pancancer cell adhesion mechanisms by connecting the preclinical datasets generated in the Cordes lab with publicly available transcriptomic and patient survival data. We identified similarly changed differentially expressed genes (scDEGs) in nine cancers and their corresponding cell models relative to normal tissues. Those scDEGs interconnected with 212 molecular targets from Cordes lab datasets generated during two decades of research on adhesome and radiobiology. Intriguingly, integrative analysis of adhesion associated scDEGs, TCGA patient survival and protein-protein network reconstruction revealed a set of overexpressed genes adversely affecting overall cancer patient survival and specifically the survival in radiotherapy-treated cohorts. This pancancer gene set includes key integrins (e.g. ITGA6, ITGB1, ITGB4) and their interconnectors (e.g. SPP1, TGFBI), affirming their critical role in the cancer adhesion resistome. In summary, this meta-analysis demonstrates the importance of the adhesome in general, and integrins together with their interconnectors in particular, as potentially conserved determinants and therapeutic targets in cancer.

14.
Am J Cancer Res ; 13(10): 4597-4612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970361

RESUMO

Glioblastomas (GBM) are the most common primary brain tumors in adults and associated with poor clinical outcomes due to therapy resistances and destructive growth. Interactions of cancer cells with the extracellular matrix (ECM) play a pivotal role in therapy resistances and tumor progression. In this study, we investigate the functional dependencies between the discoidin domain receptor 1 (DDR1) and the integrin family of cell adhesion molecules for the radioresponse of human glioblastoma cells. By means of an RNA interference screen on DDR1 and all known integrin subunits, we identified co-targeting of DDR1/integrin ß3 to most efficiently reduce clonogenicity, enhance cellular radiosensitivity and diminish repair of DNA double strand breaks (DSB). Simultaneous pharmacological inhibition of DDR1 with DDR1-IN-1 and of integrins αVß3/αVß5 with cilengitide resulted in confirmatory data in a panel of 2D grown glioblastoma cultures and 3D gliospheres. Mechanistically, we found that key DNA repair proteins ATM and DNA-PK are altered upon DDR1/integrin αVß3/integrin αVß5 inhibition, suggesting a link to DNA repair mechanisms. In sum, the radioresistance of human glioblastoma cells can effectively be declined by co-deactivation of DDR1, integrin αVß3 and integrin αVß5.

15.
J Invertebr Pathol ; 109(2): 209-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22119631

RESUMO

Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation.


Assuntos
Abelhas/microbiologia , Abelhas/parasitologia , Crithidia/genética , Infecções por Euglenozoa/veterinária , Microsporidiose/veterinária , Nosema/genética , Animais , Criação de Abelhas , Crithidia/patogenicidade , Ecossistema , Infecções por Euglenozoa/epidemiologia , Infecções por Euglenozoa/microbiologia , Variação Genética , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Repetições de Microssatélites/genética , Microsporidiose/epidemiologia , Microsporidiose/parasitologia , Nosema/patogenicidade , RNA Ribossômico/genética , Especificidade da Espécie , Esporos Fúngicos , Estados Unidos/epidemiologia
16.
In Vitro Cell Dev Biol Anim ; 58(2): 169-178, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35194763

RESUMO

Cell adhesion to extracellular matrix proteins mediates resistance to radio- and chemotherapy by activating integrin signaling. In addition, mutual and cooperative interactions between integrin and growth factor receptor signaling contribute to the cellular radiation response. Here, we investigate to which extend the crosstalk between ß1 integrins and growth factor receptor signaling determines the cellular radiation response of fibroblasts by assessing clonogenic survival and cell cycling. By utilizing growth factor signaling competent and either ß1 integrin wildtype GD25ß1A fibroblasts or ß1 integrin mutant, signaling incompetent GD25ß1B fibroblasts, we show basal clonogenic survival to depend on growth factor receptor but not integrin signaling. Our data further suggest the cooperation between ß1 integrins and growth factor receptors to be critical for enhancing the radiation-induced G2/M cell cycle block leading to improved clonogenic radiation survival. By pharmacological inhibition of EGFR and PI3K, we additionally show that the essential contribution of EGFR signaling to radiogenic G2/M cell cycle arrest depends on the co-activation of the ß1 integrin signaling axis, but occurs independent of PI3K. Taken together, elucidation of the signaling circuitry underlying the EGFR/ß1 integrin crosstalk may support the development of advanced molecular targeted therapies for radiation oncology.


Assuntos
Integrina beta1 , Transdução de Sinais , Animais , Ciclo Celular , Fibroblastos/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Receptores de Fatores de Crescimento/metabolismo
17.
Int J Radiat Oncol Biol Phys ; 112(2): 487-498, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481933

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet needs. The role of highly conformal radiation therapy is still under debate for PDAC. Owing to its desmoplastic nature, integrin-mediated interactions between PDAC cells and extracellular matrix (ECM) profoundly contribute to PDAC therapy resistance. In this study, we investigated the radiochemosensitizing potential of ß1 integrin targeting in therapy-naive and radioresistant PDAC cell cultures grown in 3-dimensional (3D) ECM. METHODS AND MATERIALS: In a panel of 3D, ECM-based PDAC cell cultures, ß1 integrin was inhibited by antibodies or siRNA-mediated knockdown. Together with x-ray irradiation and specific chemotherapies, we determined 3D colony formation capacity in therapy-naive and radioresistant PDAC cultures. We used kinome profiling, Western blotting, and immunofluorescence stainings to characterize these cell lines. Various siRNA screens were conducted to identify novel therapeutic targets. RESULTS: We found a significant radiosensitizing potential of ß1 integrin inhibition both in therapy-naive and radioresistant PDAC cell cultures. Kinome profiling upon ß1 integrin targeting identified a generally declined tyrosine and serine/threonine kinase activity, which presented less prominent in radioresistant than in therapy-naive PDAC cells. siRNA screens employing the top 34 deregulated kinases in combination with ß1 integrin inhibition revealed less efficacy and less radiosensitization in radioresistant relative to therapy-naive PDAC cell cultures. Triple inhibition of ß1 integrin, protein kinase D1, and rearranged during transfection turned out to be most effective in reducing 3D colony formation of radioresistant PDAC cells. CONCLUSIONS: Our study clearly shows that ß1 integrins are robust targets for overcoming radioresistance in PDAC. This seems to apply equally to therapy-sensitive and radioresistant cells. Concerning tumor heterogeneity, this dual therapy-sensitizing potential might be exploitable for a significant improvement of patient survival.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/radioterapia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico
18.
Cells ; 11(14)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883575

RESUMO

Glioblastoma is a devastating malignant disease with poor patient overall survival. Strong invasiveness and resistance to radiochemotherapy have challenged the identification of molecular targets that can finally improve treatment outcomes. This study evaluates the influence of all six known p21-activated kinase (PAK) protein family members on the invasion capacity and radio-response of glioblastoma cells by employing a siRNA-based screen. In a panel of human glioblastoma cell models, we identified PAK4 as the main PAK isoform regulating invasion and clonogenic survival upon irradiation and demonstrated the radiosensitizing potential of PAK4 inhibition. Mechanistically, we show that PAK4 depletion and pharmacological inhibition enhanced the number of irradiation-induced DNA double-strand breaks and reduced the expression levels of various DNA repair proteins. In conclusion, our data suggest PAK4 as a putative target for radiosensitization and impairing DNA repair in glioblastoma, deserving further scrutiny in extended combinatorial treatment testing.


Assuntos
Glioblastoma , Quinases Ativadas por p21 , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , RNA Interferente Pequeno , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
19.
Cancers (Basel) ; 14(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35053488

RESUMO

Although radiation therapy has recently made great advances in cancer treatment, the majority of patients diagnosed with pancreatic cancer (PC) cannot achieve satisfactory outcomes due to intrinsic and acquired radioresistance. Identifying the molecular mechanisms that impair the efficacy of radiotherapy and targeting these pathways are essential to improve the radiation response of PC patients. Our goal is to identify sensitive targets for pancreatic cancer radiotherapy (RT) using the kinome-wide CRISPR-Cas9 loss-of-function screen and enhance the therapeutic effect through the development and application of targeted inhibitors combined with radiotherapy. We transduced pancreatic cancer cells with a protein kinase library; 2D and 3D library cells were irradiated daily with a single dose of up to 2 Gy for 4 weeks for a total of 40 Gy using an X-ray generator. Sufficient DNA was collected for next-generation deep sequencing to identify candidate genes. In this study, we identified several cell cycle checkpoint kinases and DNA damage related kinases in 2D- and 3D-cultivated cells, including DYRK1A, whose loss of function sensitizes cells to radiotherapy. Additionally, we demonstrated that the harmine-targeted suppression of DYRK1A used in conjunction with radiotherapy increases DNA double-strand breaks (DSBs) and impairs homologous repair (HR), resulting in more cancer cell death. Our results support the use of CRISPR-Cas9 screening to identify new therapeutic targets, develop radiosensitizers, and provide novel strategies for overcoming the tolerance of pancreatic cancer to radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA