Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 23(1): 299, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375756

RESUMO

BACKGROUND: Battling malaria's morbidity and mortality rates demands innovative methods related to malaria diagnosis. Thick blood smears (TBS) are the gold standard for diagnosing malaria, but their coloration quality is dependent on supplies and adherence to standard protocols. Machine learning has been proposed to automate diagnosis, but the impact of smear coloration on parasite detection has not yet been fully explored. METHODS: To develop Coloration Analysis in Malaria (CAM), an image database containing 600 images was created. The database was randomly divided into training (70%), validation (15%), and test (15%) sets. Nineteen feature vectors were studied based on variances, correlation coefficients, and histograms (specific variables from histograms, full histograms, and principal components from the histograms). The Machine Learning Matlab Toolbox was used to select the best candidate feature vectors and machine learning classifiers. The candidate classifiers were then tuned for validation and tested to ultimately select the best one. RESULTS: This work introduces CAM, a machine learning system designed for automatic TBS image quality analysis. The results demonstrated that the cubic SVM classifier outperformed others in classifying coloration quality in TBS, achieving a true negative rate of 95% and a true positive rate of 97%. CONCLUSIONS: An image-based approach was developed to automatically evaluate the coloration quality of TBS. This finding highlights the potential of image-based analysis to assess TBS coloration quality. CAM is intended to function as a supportive tool for analyzing the coloration quality of thick blood smears.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Humanos , Malária , Cor
2.
Malar J ; 21(1): 74, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255896

RESUMO

BACKGROUND: The World Health Organization (WHO) provides protocols for the diagnosis of malaria. One of them is related to the staining process of blood samples to guarantee the correct parasite visualization. Ensuring the quality of the staining procedure on thick blood smears (TBS) is a difficult task, especially in rural centres, where there are factors that can affect the smear quality (e.g. types of reagents employed, place of sample preparation, among others). This work presents an analysis of an image-based approach to evaluate the coloration quality of the staining process of TBS used for malaria diagnosis. METHODS: According to the WHO, there are different coloration quality descriptors of smears. Among those, the background colour is one of the best indicators of how well the staining process was conducted. An image database with 420 images (corresponding to 42 TBS samples) was created for analysing and testing image-based algorithms to detect the quality of the coloration of TBS. Background segmentation techniques were explored (based on RGB and HSV colour spaces) to separate the background and foreground (leukocytes, platelets, parasites) information. Then, different features (PCA, correlation, Histograms, variance) were explored as image criteria of coloration quality on the extracted background information; and evaluated according to their capability to classify images as with Good or Bad coloration quality from TBS. RESULTS: For background segmentation, a thresholding-based approach in the SV components of the HSV colour space was selected. It provided robustness separating the background information independently of its coloration quality. On the other hand, as image criteria of coloration quality, among the 19 feature vectors explored, the best one corresponds to the 15-bins histogram of the Hue component with classification rates of > 97%. CONCLUSIONS: An analysis of an image-based approach to describe the coloration quality of TBS was presented. It was demonstrated that if a robust background segmentation is conducted, the histogram of the H component from the HSV colour space is the best feature vector to discriminate the coloration quality of the smears. These results are the baseline for automating the estimation of the coloration quality, which has not been studied before, but that can be crucial for automating TBS's analysis for assisting malaria diagnosis process.


Assuntos
Malária , Parasitos , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Malária/diagnóstico , Manejo de Espécimes/métodos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA