RESUMO
BACKGROUND: Drought stress negatively affects plant growth and productivity. Plants sense soil drought at the root level but the underlying mechanisms remain unclear. At the cell level, we aim to reveal the short-term root perception of drought stress through membrane dynamics. RESULTS: In our study, 15 Medicago truncatula accessions were exposed to a polyethylene glycol (PEG)-induced drought stress, leading to contrasted ecophysiological responses, in particular related to root architecture plasticity. In the reference accession Jemalong A17, identified as drought susceptible, we analyzed lateral roots by imaging of membrane-localized fluorescent probes using confocal microscopy. We found that PEG stimulated endocytosis especially in cells belonging to the growth differentiation zone (GDZ). The mapping of membrane lipid order in cells along the root apex showed that membranes of root cap cells were more ordered than those of more differentiated cells. Moreover, PEG triggered a significant increase in membrane lipid order of rhizodermal cells from the GDZ. We initiated the membrane analysis in the drought resistant accession HM298, which did not reveal such membrane modifications in response to PEG. CONCLUSIONS: Our data demonstrated that the plasma membranes of root cells from a susceptible genotype perceived drought stress by modulating their physical state both via a stimulation of endocytosis and a modification of the degree of lipid order, which could be proposed as mechanisms required for signal transduction.
Assuntos
Secas , Endocitose , Medicago truncatula/fisiologia , Lipídeos de Membrana/metabolismo , Genótipo , Medicago truncatula/genética , Células Vegetais/metabolismo , Células Vegetais/fisiologia , Polietilenoglicóis/administração & dosagem , Rizoma/metabolismo , Rizoma/fisiologia , Estresse FisiológicoRESUMO
As drought is increasingly frequent in the context of climate change it is a major constraint for crop growth and yield. The ability of plants to maintain their yield in response to drought depends not only on their ability to tolerate drought, but also on their capacity to subsequently recover. Post-stress recovery can indeed be decisive for drought resilience and yield stability. Pea (Pisum sativum), as a legume, has the capacity to fix atmospheric nitrogen through its symbiotic interaction with soil bacteria within root nodules. Biological nitrogen fixation is highly sensitive to drought which can impact plant nitrogen nutrition and growth. Our study aimed at dynamically evaluating whether the control of plant N status after drought could affect nodulated pea plant's ability to recover. Two pea genotypes, Puget and Kayanne, displaying different drought resilience abilities were compared for their capacity to tolerate to, and to recover from, a 2-weeks water-deficit period applied before flowering. Physiological processes were studied in this time-series experiment using a conceptual structure-function analysis framework focusing on whole plant carbon, nitrogen, and water fluxes combined to two 13CO2 and 15N2 labeling experiments. While Puget showed a yield decrease compared to well-watered plants, Kayanne was able to maintain its yield. During the recovery period, genotype-dependent strategies were observed. The analysis of the synchronization of carbon, nitrogen, and water related traits dynamics during the recovery period and at the whole plant level, revealed that plant growth recovery was tightly linked to N nutrition. In Puget, the initiation of new nodules after water deficit was delayed compared to control plants, and additional nodules developed, while in Kayanne the formation of nodules was both rapidly and strictly re-adjusted to plant growth needs, allowing a full recovery. Our study suggested that a rapid re-launch of N acquisition, associated with a fine-tuning of nodule formation during the post-stress period is essential for efficient drought resilience in pea leading to yield stability.