RESUMO
Poorly differentiated neuroendocrine carcinomas (NECs) are rare malignant neoplasms with aggressive behavior. The diagnosis remains challenging due to ever-changing terminologies and morphologic overlaps with other disease entities. Herein, we seek to better define anorectal NECs by high-risk human papillomavirus (HPV) status and molecular profiling. Fourteen cases, including 3 men and 11 women with a median age of 63 years, were included. High-risk HPV RNA in situ hybridization was diffusely positive (+) in 7 cases, focal rarely positive (+/-) in 2 cases, and completely negative (-) in 5 cases. By morphology, all HPV(-) NECs were large-cell type, 3 mixed with a tubular adenoma/dysplasia or invasive adenocarcinoma. HPV-related (+ or +/-) NECs were mostly small-cell type, 3 mixed with squamous dysplasia and/or squamous cell carcinoma. Immunohistochemically, all NECs were positive for at least 2 neuroendocrine markers. The HPV(-) NECs were also positive for CDX2, whereas all HPV-related NECs were negative or only focally positive for CDX2, p40, and p63. Overexpression of p53 was found in 3 HPV(-) and 2 HPV(+/-) NECs but not in any HPV(+) NECs. Molecular analysis revealed MYC gene amplification in 4 cases: 2 HPV(-), 1 HPV(+/-), and 1 HPV(+). This was confirmed by fluorescence in situ hybridization in all but 1 HPV(-) NEC, which showed polysomy 8 but no true MYC amplification. Interestingly, only 2 of the 4 MYC amplification-bearing cases, both p53 normal/wild-type, expressed c-Myc protein by immunohistochemistry. The other 2 cases, both p53 overexpressed, did not show c-Myc expression despite true MYC amplification. Our study demonstrates that anorectal NECs arise in HPV-dependent or -independent pathways, with heterogeneous expression of other lineage markers and different molecular signatures. Expressions of p53 and c-Myc proteins appear to be mutually exclusive regardless of HPV status, likely mediating alternative mechanisms of NEC carcinogenesis.
Assuntos
Carcinoma Neuroendócrino , Infecções por Papillomavirus , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Hibridização in Situ Fluorescente , Carcinoma Neuroendócrino/patologia , CarcinogêneseRESUMO
D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.
Assuntos
Perda Auditiva Neurossensorial , Hipoglicemia , Deficiência de Proteína , Éxons , Perda Auditiva Neurossensorial/genética , Humanos , Hipoglicemia/genética , Recém-Nascido , Proteína Multifuncional do Peroxissomo-2/genética , Deficiência de Proteína/genéticaRESUMO
Compound heterozygotes occur when different variants at the same locus on both maternal and paternal chromosomes produce a recessive trait. Here we present the tool VarCount for the quantification of variants at the individual level. We used VarCount to characterize compound heterozygous coding variants in patients with epileptic encephalopathy and in the 1000 Genomes Project participants. The Epi4k data contains variants identified by whole exome sequencing in patients with either Lennox-Gastaut Syndrome (LGS) or infantile spasms (IS), as well as their parents. We queried the Epi4k dataset (264 trios) and the phased 1000 Genomes Project data (2504 participants) for recessive variants. To assess enrichment, transcript counts were compared between the Epi4k and 1000 Genomes Project participants using minor allele frequency (MAF) cutoffs of 0.5 and 1.0%, and including all ancestries or only probands of European ancestry. In the Epi4k participants, we found enrichment for rare, compound heterozygous variants in six genes, including three involved in neuronal growth and development - PRTG (p = 0.00086, 1% MAF, combined ancestries), TNC (p = 0.022, 1% MAF, combined ancestries) and MACF1 (p = 0.0245, 0.5% MAF, EU ancestry). Due to the total number of transcripts considered in these analyses, the enrichment detected was not significant after correction for multiple testing and higher powered or prospective studies are necessary to validate the candidacy of these genes. However, PRTG, TNC and MACF1 are potential novel recessive epilepsy genes and our results highlight that compound heterozygous variants should be considered in sporadic epilepsy.
Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Análise de Sequência de DNA/métodos , Adulto , Alelos , Exoma , Feminino , Frequência do Gene/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Heterozigoto , Humanos , Lactente , Recém-Nascido , Síndrome de Lennox-Gastaut/genética , Síndrome de Lennox-Gastaut/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Mutação , Fenótipo , Estudos Prospectivos , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Tenascina/genéticaRESUMO
PURPOSE OF REVIEW: To summarize the current advances in our understanding or the genetic basis of nonbacterial osteomyelitis. RECENT FINDINGS: Chronic recurrent multifocal osteomyelitis (CRMO) is a complex genetic disorder. Past discoveries identified several single gene defects (LPIN2, Pstpip2 and IL1RN) that cause IL-1-mediated sterile multifocal osteomyelitis. Recently Lorden et al.'s studies show that LIPIN2 deficiency can activate the NLRP3 inflammasome through alterations in the function of P2X7 receptor providing evidence that Majeed syndrome is an NLRP3 inflammasomopathy. New gene discoveries include the identification of FBLIM1 as a CRMO susceptibility gene. Mutations in FBLIM1 were found in a consanguineous family with CRMO. Fblim1 is one of the most significantly differentially expressed gene in bone from chronic multifocal osteomyelitis (cmo) mice, plays a role in IL-10-driven anti-inflammatory responses, and is involved in the physiology of bone remodeling. Lastly, new data on the putative CRMO susceptibility locus on chromosome 18 is presented here. Using Sanger sequencing, rather than microsatellite analysis, the DS18S60 susceptibility region could not be replicated in a larger cohort. SUMMARY: CRMO occurs in humans, nonhuman primates, dogs and mice. There is a genetic component to disease but the genetic basis has only been identified for a small percentage of all cases.
Assuntos
Osteomielite/genética , Animais , Moléculas de Adesão Celular/genética , Cromossomos Humanos Par 18/genética , Doença Crônica , Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença , Humanos , Inflamassomos/genética , Camundongos , MutaçãoRESUMO
Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to generalizable therapeutic strategies. Mutations in the PRICKLE genes can cause seizures in humans, zebrafish, mice, and flies, suggesting the seizure-suppression pathway is evolutionarily conserved. This pathway has never been targeted for novel anti-seizure treatments. Here, the mammalian PRICKLE-interactome was defined, identifying prickle-interacting proteins that localize to synapses and a novel interacting partner, USP9X, a substrate-specific de-ubiquitinase. PRICKLE and USP9X interact through their carboxy-termini; and USP9X de-ubiquitinates PRICKLE, protecting it from proteasomal degradation. In forebrain neurons of mice, USP9X deficiency reduced levels of Prickle2 protein. Genetic analysis suggests the same pathway regulates Prickle-mediated seizures. The seizure phenotype was suppressed in prickle mutant flies by the small-molecule USP9X inhibitor, Degrasyn/WP1130, or by reducing the dose of fat facets a USP9X orthologue. USP9X mutations were identified by resequencing a cohort of patients with epileptic encephalopathy, one patient harbored a de novo missense mutation and another a novel coding mutation. Both USP9X variants were outside the PRICKLE-interacting domain. These findings demonstrate that USP9X inhibition can suppress prickle-mediated seizure activity, and that USP9X variants may predispose to seizures. These studies point to a new target for anti-seizure therapy and illustrate the translational power of studying diseases in species across the evolutionary spectrum.
Assuntos
Convulsões/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Drosophila melanogaster , Humanos , Espectrometria de Massas , Camundongos , Convulsões/tratamento farmacológico , Ubiquitina Tiolesterase/genéticaRESUMO
PURPOSE OF REVIEW: We focus on recent advances in the understanding of the genetic, molecular, immunologic, and environmental factors implicated in the pathogenesis of autoinflammatory bone diseases including the syndromic and non-syndromic forms of chronic recurrent multifocal osteomyelitis (CRMO). RECENT FINDINGS: Evidence implicating the IL-1 pathway in the pathogenesis of the Mendelian forms of CRMO is growing. LIPIN2 can regulate the NLRP3 inflammasome by affecting P2X7 receptor activation, and intracellular cholesterol can modulate P2X7R currents. Work in a mouse model of CRMO demonstrates that dietary manipulation can alter the microbiome and protect these mice from the development of sterile osteomyelitis in vivo. Although the genetic and immunologic basis of non-syndromic CRMO remains only partially understood, the IL-1 pathway is central to the pathogenesis in the syndromic autoinflammatory bone disorders. Recent work implicates lipids and the microbiome in sterile osteomyelitis.
Assuntos
Doenças Hereditárias Autoinflamatórias/etiologia , Osteomielite/etiologia , Anemia Diseritropoética Congênita/etiologia , Animais , Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Humanos , Síndromes de Imunodeficiência , Inflamassomos/fisiologia , Interleucina-1/imunologia , Camundongos , Microbiota , Proteínas Nucleares/fisiologiaRESUMO
Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.01-1 µM) significantly increased cell proliferation and promoted cell cycle progression from the G1 to S/G2 phases in the non-tumorigenic MCF10A breast epithelial cell line. The expression of 14 out of 96 cell-cycle-associated genes significantly increased, and seven of these genes including cell division cycle 6 (CDC6) and cyclin D1 (CCND1) were closely related to cell cycle progression from G1 to S phase. Low-dose ATO steadily increased gene transcript and protein levels of both CDC6 and cyclin D1 in a dose- and time-dependent manner. Low-dose ATO produced reactive oxygen species (ROS), and activated the p38 MAPK, Akt, and ERK1/2 pathways at different time points within 60 min. Small molecular inhibitors and siRNAs inhibiting the activation of p38 MAPK, Akt, and ERK1/2 decreased the ATO-increased expression of CDC6 protein. Inhibiting the activation of Akt and ERK1/2, but not p38 MAPK, decreased the ATO-induced expression of cyclin D1 protein. This study reports for the first time that p38 MAPK/Akt/ERK1/2 activation is required for the protein stabilization of CDC6 in addition to cyclin D1 in ATO-induced cell proliferation and cell cycle modulation from G1 to S phase.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Óxidos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Trióxido de Arsênio , Arsenicais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).
Assuntos
Células-Tronco Hematopoéticas/metabolismo , Sistema Hematopoético/patologia , Necroptose/genética , Proteínas Quinases/genética , Animais , Animais Recém-Nascidos , Doenças Hereditárias Autoinflamatórias , Humanos , Inflamação/genética , Camundongos , Mutação de Sentido Incorreto , Osteomielite/genética , Proteínas Quinases/metabolismoRESUMO
BACKGROUND: To assess the utility of haplotype association mapping (HAM) as a quantitative trait locus (QTL) discovery tool, we conducted HAM analyses for red blood cell count (RBC) and high density lipoprotein cholesterol (HDL) in mice. We then experimentally tested each HAM QTL using published crosses or new F2 intercrosses guided by the haplotype at the HAM peaks. RESULTS: The HAM for RBC, using 33 classic inbred lines, revealed 8 QTLs; 2 of these were true positives as shown by published crosses. A HAM-guided (C57BL/6J x CBA/J)F2 intercross we carried out verified 2 more as true positives and 4 as false positives. The HAM for HDL, using 81 strains including recombinant inbred lines and chromosome substitution strains, detected 46 QTLs. Of these, 36 were true positives as shown by published crosses. A HAM-guided (C57BL/6J x A/J)F2 intercross that we carried out verified 2 more as true positives and 8 as false positives. By testing each HAM QTL for RBC and HDL, we demonstrated that 78% of the 54 HAM peaks were true positives and 22% were false positives. Interestingly, all false positives were in significant allelic association with one or more real QTL. CONCLUSION: Because type I errors (false positives) can be detected experimentally, we conclude that HAM is useful for QTL detection and narrowing. We advocate the powerful and economical combined approach demonstrated here: the use of HAM for QTL discovery, followed by mitigation of the false positive problem by testing the HAM-predicted QTLs with small HAM-guided experimental crosses.
Assuntos
HDL-Colesterol/sangue , HDL-Colesterol/genética , Contagem de Eritrócitos , Haplótipos , Camundongos Endogâmicos/genética , Locos de Características Quantitativas , Alelos , Animais , Biologia Computacional , Feminino , Masculino , CamundongosRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0169687.].
RESUMO
Chronic recurrent multifocal osteomyelitis (CRMO) is a rare, pediatric, autoinflammatory disease characterized by bone pain due to sterile osteomyelitis, and is often accompanied by psoriasis or inflammatory bowel disease. There are two syndromic forms of CRMO, Majeed syndrome and DIRA, for which the genetic cause is known. However, for the majority of cases of CRMO, the genetic basis is unknown. Via whole-exome sequencing, we detected a homozygous mutation in the filamin-binding domain of FBLIM1 in an affected child with consanguineous parents. Microarray analysis of bone marrow macrophages from the CRMO murine model (cmo) determined that the Fblim1 ortholog is the most differentially expressed gene, downregulated over 20-fold in the cmo mouse. We sequenced FBLIM1 in 96 CRMO subjects and found a second proband with a novel frameshift mutation in exon 6 and a rare regulatory variant. In SaOS2 cells, overexpressing the regulatory mutation showed the flanking region acts as an enhancer, and the mutation ablates enhancer activity. Our data implicate FBLIM1 in the pathogenesis of sterile bone inflammation and our findings suggest CRMO is a disorder of chronic inflammation and imbalanced bone remodeling.
Assuntos
Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Genes Recessivos , Mutação , Osteomielite/genética , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Linhagem Celular Tumoral , Criança , Proteínas do Citoesqueleto/química , Feminino , Humanos , Interleucina-10/genética , Camundongos , Regiões Promotoras Genéticas , Homologia de Sequência de AminoácidosRESUMO
PURPOSE: We characterize calpain-5 (CAPN5) expression in retinal and neuronal subcellular compartments. METHODS: CAPN5 gene variants were classified using the exome variant server, and RNA-sequencing was used to compare expression of CAPN5 mRNA in the mouse and human retina and in retinoblastoma cells. Expression of CAPN5 protein was ascertained in humans and mice in silico, in mouse retina by immunohistochemistry, and in neuronal cancer cell lines and fractionated central nervous system tissue extracts by Western analysis with eight antibodies targeting different CAPN5 regions. RESULTS: Most CAPN5 genetic variation occurs outside its protease core; and searches of cancer and epilepsy/autism genetic databases found no variants similar to hyperactivating retinal disease alleles. The mouse retina expressed one transcript for CAPN5 plus those of nine other calpains, similar to the human retina. In Y79 retinoblastoma cells, the level of CAPN5 transcript was very low. Immunohistochemistry detected CAPN5 expression in the inner and outer nuclear layers and at synapses in the outer plexiform layer. Western analysis of fractionated retinal extracts confirmed CAPN5 synapse localization. Western blots of fractionated brain neuronal extracts revealed distinct subcellular patterns and the potential presence of autoproteolytic CAPN5 domains. CONCLUSIONS: CAPN5 is moderately expressed in the retina and, despite higher expression in other tissues, hyperactive disease mutants of CAPN5 only manifest as eye disease. At the cellular level, CAPN5 is expressed in several different functional compartments. CAPN5 localization at the photoreceptor synapse and with mitochondria explains the neural circuitry phenotype in human CAPN5 disease alleles.