Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1413-24, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046442

RESUMO

Proteomics has proved invaluable in generating large-scale quantitative data; however, the development of systems approaches for examining the proteome in vivo has lagged behind. To evaluate protein abundance and localization on a proteome scale, we exploited the yeast GFP-fusion collection in a pipeline combining automated genetics, high-throughput microscopy, and computational feature analysis. We developed an ensemble of binary classifiers to generate localization data from single-cell measurements and constructed maps of ∼3,000 proteins connected to 16 localization classes. To survey proteome dynamics in response to different chemical and genetic stimuli, we measure proteome-wide abundance and localization and identified changes over time. We analyzed >20 million cells to identify dynamic proteins that redistribute among multiple localizations in hydroxyurea, rapamycin, and in an rpd3Δ background. Because our localization and abundance data are quantitative, they provide the opportunity for many types of comparative studies, single cell analyses, modeling, and prediction. VIDEO ABSTRACT.


Assuntos
Proteoma/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Máquina de Vetores de Suporte , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
2.
Am J Respir Cell Mol Biol ; 62(3): 283-299, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31661299

RESUMO

The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.


Assuntos
Métodos Epidemiológicos , Pulmão/microbiologia , Microbiota , Animais , Anti-Infecciosos/farmacologia , Técnicas de Tipagem Bacteriana , Líquidos Corporais/microbiologia , Testes Respiratórios , Disbiose/microbiologia , Exposição Ambiental , Interações entre Hospedeiro e Microrganismos , Humanos , Metagenômica/métodos , Técnicas Microbiológicas , Microbiota/efeitos dos fármacos , Modelos Animais , Modelos Biológicos , Reprodutibilidade dos Testes , Sistema Respiratório/microbiologia , Manejo de Espécimes/métodos , Escarro/microbiologia , Pesquisa Translacional Biomédica , Sequenciamento Completo do Genoma
4.
Am J Respir Crit Care Med ; 195(12): 1640-1650, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28085486

RESUMO

RATIONALE: Changes in the respiratory microbiome are associated with disease progression in idiopathic pulmonary fibrosis (IPF). The role of the host response to the respiratory microbiome remains unknown. OBJECTIVES: To explore the host-microbial interactions in IPF. METHODS: Sixty patients diagnosed with IPF were prospectively enrolled together with 20 matched control subjects. Subjects underwent bronchoalveolar lavage (BAL), and peripheral whole blood was collected into PAXgene tubes for all subjects at baseline. For subjects with IPF, additional samples were taken at 1, 3, and 6 months and (if alive) 1 year. Gene expression profiles were generated using Affymetrix Human Gene 1.1 ST arrays. MEASUREMENTS AND MAIN RESULTS: By network analysis of gene expression data, we identified two gene modules that strongly associated with a diagnosis of IPF, BAL bacterial burden (determined by 16S quantitative polymerase chain reaction), and specific microbial operational taxonomic units, as well as with lavage and peripheral blood neutrophilia. Genes within these modules that are involved in the host defense response include NLRC4, PGLYRP1, MMP9, and DEFA4. The modules also contain two genes encoding specific antimicrobial peptides (SLPI and CAMP). Many of these particular transcripts were associated with survival and showed longitudinal overexpression in subjects experiencing disease progression, further strengthening the relationship of the transcripts with disease. CONCLUSIONS: Integrated analysis of the host transcriptome and microbial signatures demonstrated an apparent host response to the presence of an altered or more abundant microbiome. These responses remained elevated in longitudinal follow-up, suggesting that the bacterial communities of the lower airways may act as persistent stimuli for repetitive alveolar injury in IPF.


Assuntos
Interações Hospedeiro-Patógeno , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/microbiologia , Idoso , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino , Seguimentos , Humanos , Masculino , Microbiota , Estudos Prospectivos , Transcriptoma
5.
J Allergy Clin Immunol ; 139(3): 826-834.e13, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27576124

RESUMO

BACKGROUND: Patients with asthma and healthy controls differ in bacterial colonization of the respiratory tract. The upper airways have been shown to reflect colonization of the lower airways, the actual site of inflammation in asthma, which is hardly accessible in population studies. OBJECTIVE: We sought to characterize the bacterial communities at 2 sites of the upper respiratory tract obtained from children from a rural area and to relate these to asthma. METHODS: The microbiota of 327 throat and 68 nasal samples from school-age farm and nonfarm children were analyzed by 454-pyrosequencing of the bacterial 16S ribosomal RNA gene. RESULTS: Alterations in nasal microbiota but not of throat microbiota were associated with asthma. Children with asthma had lower α- and ß-diversity of the nasal microbiota as compared with healthy control children. Furthermore, asthma presence was positively associated with a specific operational taxonomic unit from the genus Moraxella in children not exposed to farming, whereas in farm children Moraxella colonization was unrelated to asthma. In nonfarm children, Moraxella colonization explained the association between bacterial diversity and asthma to a large extent. CONCLUSIONS: Asthma was mainly associated with an altered nasal microbiota characterized by lower diversity and Moraxella abundance. Children living on farms might not be susceptible to the disadvantageous effect of Moraxella. Prospective studies may clarify whether Moraxella outgrowth is a cause or a consequence of loss in diversity.


Assuntos
Asma/microbiologia , Nariz/microbiologia , Faringe/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Criança , DNA Bacteriano/genética , Fazendas , Feminino , Humanos , Masculino , Microbiota , RNA Ribossômico 16S/genética
6.
Respir Res ; 18(1): 29, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143484

RESUMO

Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) have been defined as events of clinically significant respiratory deterioration with an unidentifiable cause. They carry a significant mortality and morbidity and while their exact pathogenesis remains unclear, the possibility remains that hidden infection may play a role. The aim of this pilot study was to determine whether changes in the respiratory microbiota occur during an AE-IPF. Bacterial DNA was extracted from bronchoalveolar lavage from patients with stable IPF and those experiencing an AE-IPF. A hyper-variable region of the 16S ribosomal RNA gene (16S rRNA) was amplified, quantified and pyrosequenced. Culture independent techniques demonstrate AE-IPF is associated with an increased BAL bacterial burden compared to stable disease and highlight shifts in the composition of the respiratory microbiota during an AE-IPF.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Pulmonar Idiopática/microbiologia , Pulmão/microbiologia , Microbiota/genética , Doença Aguda , Idoso , Bactérias/classificação , Feminino , Humanos , Masculino , Recidiva , Especificidade da Espécie
7.
Clin Infect Dis ; 60(3): 389-97, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344536

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a devastating inflammatory bowel disease of premature infants speculatively associated with infection. Suspected NEC can be indistinguishable from sepsis, and in established cases an infant may die within hours of diagnosis. Present treatment is supportive. A means of presymptomatic diagnosis is urgently needed. We aimed to identify microbial signatures in the gastrointestinal microbiota preceding NEC diagnosis in premature infants. METHODS: Fecal samples and clinical data were collected from a 2-year cohort of 369 premature neonates. Next-generation sequencing of 16S ribosomal RNA gene regions was used to characterize the microbiota of prediagnosis fecal samples from 12 neonates with NEC, 8 with suspected NEC, and 44 controls. Logistic regression was used to determine clinical characteristics and operational taxonomic units (OTUs) discriminating cases from controls. Samples were cultured and isolates identified using matrix-assisted laser desorption/ionization-time of flight. Clostridial isolates were typed and toxin genes detected. RESULTS: A clostridial OTU was overabundant in prediagnosis samples from infants with established NEC (P = .006). Culture confirmed the presence of Clostridium perfringens type A. Fluorescent amplified fragment-length polymorphism typing established that no isolates were identical. Prediagnosis samples from NEC infants not carrying profuse C. perfringens revealed an overabundance of a Klebsiella OTU (P = .049). Prolonged continuous positive airway pressure (CPAP) therapy with supplemental oxygen was also associated with increased NEC risk. CONCLUSIONS: Two fecal microbiota signatures (Clostridium and Klebsiella OTUs) and need for prolonged CPAP oxygen signal increased risk of NEC in presymptomatic infants. These biomarkers will assist development of a screening tool to allow very early diagnosis of NEC. Clinical Trials Registration. NCT01102738.


Assuntos
Disbiose , Enterocolite Necrosante/microbiologia , Doenças do Prematuro/microbiologia , Clostridium perfringens/genética , Clostridium perfringens/isolamento & purificação , Pressão Positiva Contínua nas Vias Aéreas , Enterocolite Necrosante/terapia , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/terapia , Klebsiella/genética , Klebsiella/isolamento & purificação , Masculino , Gravidez , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Hum Mol Genet ; 22(R1): R88-94, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943792

RESUMO

Molecular techniques have revolutionized the practice of standard microbiology. In particular, 16S rRNA sequencing, whole microbial genome sequencing and metagenomics are revealing the extraordinary diversity of microorganisms on Earth and their vast genetic and metabolic repertoire. The increase in length, accuracy and number of reads generated by high-throughput sequencing has coincided with a surge of interest in the human microbiota, the totality of bacteria associated with the human body, in both health and disease. Traditional views of host/pathogen interactions are being challenged as the human microbiota are being revealed to be important in normal immune system function, to diseases not previously thought to have a microbial component and to infectious diseases with unknown aetiology. In this review, we introduce the nature of the human microbiota and application of these three key sequencing techniques for its study, highlighting both advances and challenges in the field. We go on to discuss how further adoption of additional techniques, also originally developed in environmental microbiology, will allow the establishment of disease causality against a background of numerous, complex and interacting microorganisms within the human host.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Humanos , Metagenômica , Microbiota/fisiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
9.
Am J Respir Crit Care Med ; 190(8): 906-13, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25184687

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown cause that leads to respiratory failure and death within 5 years of diagnosis. Overt respiratory infection and immunosuppression carry a high morbidity and mortality, and polymorphisms in genes related to epithelial integrity and host defense predispose to IPF. OBJECTIVES: To investigate the role of bacteria in the pathogenesis and progression of IPF. METHODS: We prospectively enrolled patients diagnosed with IPF according to international criteria together with healthy smokers, nonsmokers, and subjects with moderate chronic obstructive pulmonary disease as control subjects. Subjects underwent bronchoalveolar lavage (BAL), from which genomic DNA was isolated. The V3-V5 region of the bacterial 16S rRNA gene was amplified, allowing quantification of bacterial load and identification of communities by 16S rRNA quantitative polymerase chain reaction and pyrosequencing. MEASUREMENTS AND MAIN RESULTS: Sixty-five patients with IPF had double the burden of bacteria in BAL fluid compared with 44 control subjects. Baseline bacterial burden predicted the rate of decline in lung volume and risk of death and associated independently with the rs35705950 polymorphism of the MUC5B mucin gene, a proven host susceptibility factor for IPF. Sequencing yielded 912,883 high-quality reads from all subjects. We identified Haemophilus, Streptococcus, Neisseria, and Veillonella spp. to be more abundant in cases than control subjects. Regression analyses indicated that these specific operational taxonomic units as well as bacterial burden associated independently with IPF. CONCLUSIONS: IPF is characterized by an increased bacterial burden in BAL that predicts decline in lung function and death. Trials of antimicrobial therapy are needed to determine if microbial burden is pathogenic in the disease.


Assuntos
Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Pulmonar Idiopática/microbiologia , Microbiota , Idoso , Carga Bacteriana , Lavagem Broncoalveolar , Broncoscopia , Estudos de Casos e Controles , DNA Bacteriano/análise , Progressão da Doença , Feminino , Marcadores Genéticos , Técnicas de Genotipagem , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/fisiopatologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Mucina-5B/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Estudos Prospectivos , Análise de Sequência de DNA
10.
BMC Biol ; 12: 87, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25387460

RESUMO

BACKGROUND: The study of microbial communities has been revolutionised in recent years by the widespread adoption of culture independent analytical techniques such as 16S rRNA gene sequencing and metagenomics. One potential confounder of these sequence-based approaches is the presence of contamination in DNA extraction kits and other laboratory reagents. RESULTS: In this study we demonstrate that contaminating DNA is ubiquitous in commonly used DNA extraction kits and other laboratory reagents, varies greatly in composition between different kits and kit batches, and that this contamination critically impacts results obtained from samples containing a low microbial biomass. Contamination impacts both PCR-based 16S rRNA gene surveys and shotgun metagenomics. We provide an extensive list of potential contaminating genera, and guidelines on how to mitigate the effects of contamination. CONCLUSIONS: These results suggest that caution should be advised when applying sequence-based techniques to the study of microbiota present in low biomass environments. Concurrent sequencing of negative control samples is strongly advised.


Assuntos
Contaminação por DNA , Indicadores e Reagentes/análise , Laboratórios , Metagenômica , Microbiota , Salmonella/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , Análise de Sequência de DNA
12.
Crit Care ; 18(2): R82, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24766968

RESUMO

INTRODUCTION: Heparin is safe and prevents venous thromboembolism in critical illness. We aimed to determine the guideline concordance for thromboprophylaxis in critically ill patients and its predictors, and to analyze factors associated with the use of low molecular weight heparin (LMWH), as it may be associated with a lower risk of pulmonary embolism and heparin-induced thrombocytopenia without increasing the bleeding risk. METHODS: We performed a retrospective audit in 28 North American intensive care units (ICUs), including all consecutive medical-surgical patients admitted in November 2011. We documented ICU thromboprophylaxis and reasons for omission. Guideline concordance was determined by adding days in which patients without contraindications received thromboprophylaxis to days in which patients with contraindications did not receive it, divided by the total number of patient-days. We used multilevel logistic regression including time-varying, center and patient-level covariates to determine the predictors of guideline concordance and use of LMWH. RESULTS: We enrolled 1,935 patients (62.3 ± 16.7 years, Acute Physiology and Chronic Health Evaluation [APACHE] II score 19.1 ± 8.3). Patients received thromboprophylaxis with unfractionated heparin (UFH) (54.0%) or LMWH (27.6%). Guideline concordance occurred for 95.5% patient-days and was more likely in patients who were sicker (odds ratio (OR) 1.49, 95% confidence interval (CI) 1.17, 1.75 per 10-point increase in APACHE II), heavier (OR 1.32, 95% CI 1.05, 1.65 per 10-m/kg2 increase in body mass index), had cancer (OR 3.22, 95% CI 1.81, 5.72), previous venous thromboembolism (OR 3.94, 95% CI 1.46,10.66), and received mechanical ventilation (OR 1.83, 95% CI 1.32,2.52). Reasons for not receiving thromboprophylaxis were high risk of bleeding (44.5%), current bleeding (16.3%), no reason (12.9%), recent or upcoming invasive procedure (10.2%), nighttime admission or discharge (9.7%), and life-support limitation (6.9%). LMWH was less often administered to sicker patients (OR 0.65, 95% CI 0.48, 0.89 per 10-point increase in APACHE II), surgical patients (OR 0.41, 95% CI 0.24, 0.72), those receiving vasoactive drugs (OR 0.47, 95% CI 0.35, 0.64) or renal replacement therapy (OR 0.10, 95% CI 0.05, 0.23). CONCLUSIONS: Guideline concordance for thromboprophylaxis was high, but LMWH was less commonly used, especially in patients who were sicker, had surgery, or received vasopressors or renal replacement therapy, representing a potential quality improvement target.


Assuntos
Anticoagulantes/administração & dosagem , Estado Terminal/terapia , Heparina de Baixo Peso Molecular/administração & dosagem , Auditoria Médica/métodos , Terapia Trombolítica/métodos , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
13.
Am J Respir Crit Care Med ; 188(10): 1224-31, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23992479

RESUMO

RATIONALE: Rhinovirus infection is followed by significantly increased frequencies of positive, potentially pathogenic sputum cultures in chronic obstructive pulmonary disease (COPD). However, it remains unclear whether these represent de novo infections or an increased load of organisms from the complex microbial communities (microbiome) in the lower airways. OBJECTIVES: To investigate the effect of rhinovirus infection on the airway bacterial microbiome. METHODS: Subjects with COPD (n = 14) and healthy control subjects with normal lung function (n = 17) were infected with rhinovirus. Induced sputum was collected at baseline before rhinovirus inoculation and again on Days 5, 15, and 42 after rhinovirus infection and DNA was extracted. The V3-V5 region of the bacterial 16S ribosomal RNA gene was amplified and pyrosequenced, resulting in 370,849 high-quality reads from 112 of the possible 124 time points. MEASUREMENTS AND MAIN RESULTS: At 15 days after rhinovirus infection, there was a sixfold increase in 16S copy number (P = 0.007) and a 16% rise in numbers of proteobacterial sequences, most notably in potentially pathogenic Haemophilus influenzae (P = 2.7 × 10(-20)), from a preexisting community. These changes occurred only in the sputum microbiome of subjects with COPD and were still evident 42 days after infection. This was in contrast to the temporal stability demonstrated in the microbiome of healthy smokers and nonsmokers. CONCLUSIONS: After rhinovirus infection, there is a rise in bacterial burden and a significant outgrowth of Haemophilus influenzae from the existing microbiota of subjects with COPD. This is not observed in healthy individuals. Our findings suggest that rhinovirus infection in COPD alters the respiratory microbiome and may precipitate secondary bacterial infections.


Assuntos
Microbiota , Infecções por Picornaviridae/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Rhinovirus , Escarro/microbiologia , Idoso , Estudos de Casos e Controles , DNA Bacteriano/análise , Progressão da Doença , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Infecções por Picornaviridae/complicações , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/virologia , RNA Ribossômico 16S/análise , Análise de Sequência de DNA
14.
Commun Biol ; 7(1): 171, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347162

RESUMO

Microbial communities at the airway mucosal barrier are conserved and highly ordered, in likelihood reflecting co-evolution with human host factors. Freed of selection to digest nutrients, the airway microbiome underpins cognate management of mucosal immunity and pathogen resistance. We show here the initial results of systematic culture and whole-genome sequencing of the thoracic airway bacteria, identifying 52 novel species amongst 126 organisms that constitute 75% of commensals typically present in heathy individuals. Clinically relevant genes encode antimicrobial synthesis, adhesion and biofilm formation, immune modulation, iron utilisation, nitrous oxide (NO) metabolism and sphingolipid signalling. Using whole-genome content we identify dysbiotic features that may influence asthma and chronic obstructive pulmonary disease. We match isolate gene content to transcripts and metabolites expressed late in airway epithelial differentiation, identifying pathways to sustain host interactions with microbiota. Our results provide a systematic basis for decrypting interactions between commensals, pathogens, and mucosa in lung diseases of global significance.


Assuntos
Bactérias , Mucosa , Humanos , Mucosa/microbiologia , Bactérias/genética , Simbiose , Imunidade nas Mucosas , Genômica
16.
Front Allergy ; 4: 1214951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637137

RESUMO

Introduction: The hygiene hypothesis identified a relationship between living in rural areas and acquiring protective environmental factors against the development of asthma and atopy. In our previous study, we found a correlation between particular bacterial species and early-onset wheezing in infants from the rural tropics of Ecuador who were corticosteroid-naïve and had limited antibiotic exposure. We now describe a longitudinal study of infants conducted to determine the age-related changes of the microbiome and its relationship with wheezing. Methods: We performed an amplicon sequencing of the 16S rRNA bacterial gene from the oropharyngeal samples obtained from 110 infants who had a history of recurrent episodic wheezing sampled at different ages (7, 12, and 24 months) and compared it to the sequencing of the oropharyngeal samples from 150 healthy infants sampled at the same time points. Bioinformatic analyses were conducted using QIIME and R. Results: As expected, the microbiota diversity consistently increased as the infants grew older. Considering age-based microbiota changes, we found that infants with wheeze had significantly lower species richness than the healthy infants at 7 months, but not at 12 or 24 months. Most of the core and accessory organisms increased in abundance and prevalence with age, except for a few which decreased. At 7 months of age, infants with wheeze had notably higher levels of a single Streptococcus operational taxonomic unit and core microbiota member than controls. Conclusions: In a cohort with limited antibiotic and corticosteroid use, a progressively more complex and diverse respiratory microbial community develops with age. The respiratory microbiota in early life is altered in infants with wheeze, but this does not hold true in older infants.

17.
JMIR Res Protoc ; 12: e48014, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581914

RESUMO

BACKGROUND: Fungal-bacterial cocolonization and coinfections pose an emerging challenge among patients suspected of having pulmonary tuberculosis (PTB); however, the underlying pathogenic mechanisms and microbiome interactions are poorly understood. Understanding how environmental microbes, such as fungi and bacteria, coevolve and develop traits to evade host immune responses and resist treatment is critical to controlling opportunistic pulmonary fungal coinfections. In this project, we propose to study the coexistence of fungal and bacterial microbial communities during chronic pulmonary diseases, with a keen interest in underpinning fungal etiological evolution and the predominating interactions that may exist between fungi and bacteria. OBJECTIVE: This is a protocol for a study aimed at investigating the metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections through determining and characterizing the burden, etiological profiles, microbial communities, and interactions established between fungi and bacteria as implicated among patients with presumptive PTB. METHODS: This will be a laboratory-based cross-sectional study, with a sample size of 406 participants. From each participant, 2 sputa samples (one on-spot and one early morning) will be collected. These samples will then be analyzed for both fungal and bacterial etiology using conventional metabolic and molecular (intergenic transcribed spacer and 16S ribosomal DNA-based polymerase chain reaction) approaches. We will also attempt to design a genome-scale metabolic model for pulmonary microbial communities to analyze the composition of the entire microbiome (ie, fungi and bacteria) and investigate host-microbial interactions under different patient conditions. This analysis will be based on the interplays of genes (identified by metagenomics) and inferred from amplicon data and metabolites (identified by metabolomics) by analyzing the full data set and using specific computational tools. We will also collect baseline data, including demographic and clinical history, using a patient-reported questionnaire. Altogether, this approach will contribute to a diagnostic-based observational study. The primary outcome will be the overall fungal and bacterial diagnostic profile of the study participants. Other diagnostic factors associated with the etiological profile, such as incidence and prevalence, will also be analyzed using univariate and multivariate schemes. Odds ratios with 95% CIs will be presented with a statistical significance set at P<.05. RESULTS: The study has been approved by the Mbarara University Research Ethic Committee (MUREC1/7-07/09/20) and the Uganda National Council of Science and Technology (HS1233ES). Following careful scrutiny, the protocol was designed to enable patient enrollment, which began in March 2022 at Mbarara University Teaching Hospital. Data collection is ongoing and is expected to be completed by August 2023, and manuscripts will be submitted for publication thereafter. CONCLUSIONS: Through this protocol, we will explore the metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections among patients with presumptive PTB. Establishing key fungal-bacterial cross-kingdom synergistic relationships is crucial for instituting fungal bacterial coinfecting etiology. TRIAL REGISTRATION: ISRCTN Registry ISRCTN33572982; https://tinyurl.com/caa2nw69. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48014.

19.
Adv Exp Med Biol ; 736: 169-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22161327

RESUMO

The budding yeast is a simple and genetically tractable eukaryotic organism. It remains a leading system for functional genomic work and has been the focus of many pioneering efforts, including the systematic construction and analysis of gene deletion mutants. Over the past decade, many large-scale studies have made use of the deletion and other mutant collections to assay genetic interactions, chemical sensitivities, and other phenotypes, contributing enormously to our understanding of gene function. The deletion mutant collection has also been used in cell biological surveys to identify genes that control cell and organelle morphology. One valuable approach for systematic definition of gene function and biological pathways involves global assessment of the localization patterns of the proteins they encode and how these patterns are altered in response to environmental or genetic perturbation. However, proteome-wide, cell biological screens are extremely challenging, from both a technical and computational perspective. The yeast GFP collection, an elegant and unique strain set, is ideal for studying both protein localization and abundance across the proteome ( http://yeastgfp.yeastgenome.org/ ). In this chapter, we outline how the yeast GFP collection has been used to date and discuss approaches for conducting future surveys of the proteome.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi , Proteínas de Fluorescência Verde/genética , Mitocôndrias/metabolismo , Transporte Proteico , Proteólise , Proteoma/genética , Proteômica/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Sci Rep ; 12(1): 2803, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264599

RESUMO

The COVID-19 pandemic has demonstrated the real need for mechanisms to control the spread of airborne respiratory pathogens. Thus, preventing the spread of disease from pathogens has come to the forefront of the public consciousness. This has brought an increasing demand for novel technologies to prioritise clean air. In this study we report on the efficacy of novel biocide treated filters and their antimicrobial activity against bacteria, fungi and viruses. The antimicrobial filters reported here are shown to kill pathogens, such as Candida albicans, Escherichia coli and MRSA in under 15 min and to destroy SARS-CoV-2 viral particles in under 30 s following contact with the filter. Through air flow rate testing, light microscopy and SEM, the filters are shown to maintain their structure and filtration function. Further to this, the filters are shown to be extremely durable and to maintain antimicrobial activity throughout the operational lifetime of the product. Lastly, the filters have been tested in field trials onboard the UK rail network, showing excellent efficacy in reducing the burden of microbial species colonising the air conditioning system.


Assuntos
Filtros de Ar/microbiologia , Anti-Infecciosos/química , Antivirais/química , Filtros de Ar/virologia , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/virologia , Candida albicans/efeitos dos fármacos , Clorexidina/análogos & derivados , Clorexidina/química , Clorexidina/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA