Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Appl ; 3(2): 315-321, 1993 May.
Artigo em Inglês | MEDLINE | ID: mdl-27759326

RESUMO

Chronic nitrogen deposition has the potential to alter seedling shade tolerance and growth in the temperate forests of northeastern United States, by affecting both the form and the quantity of available nitrogen. Simulated deposition treatments were applied to seedlings of four birch species that co-occur at Harvard Forest (Betula lenta, B. alleghaniensis, B. populifolia, and B. papyrifera). Seedlings were individually potted in forest soil, and grown under light treatments representative of forest understory and treefall gap light levels. In a split-plot design, N was applied at 25 and 50 kg°ha-1 °yr-1 , as either nitrate, ammonium nitrate, or ammonium, within each light environment. While B. populifolia and B. papyrifera, and B. lenta all showed increased biomass allocation to leaves with increased N, only B. lenta showed a significant growth response to the type of N added, and this response was conditional on rate of N application and light environment. At low light, nitrate-fed B. lenta grew best, and also at low rate of supply, nitrate treatments out-performed ammonium treatments. Greater growth under these conditions is probably the result of higher biomass allocation to leaves, and greater specific leaf area, which increased the leaf area ratio, and improved the capacity for carbon gain. Under N deposition regimes that increase soil nitrate availability, the differences in response of B. lenta and B. alleghaniensis to nitrate at low light may potentially lead to changes in the species composition of the seedling communities in the understory. When a treefall occurs, a different species mix of seedlings will be released, with potential consequences for sapling and tree species mix.

2.
Oecologia ; 70(2): 222-226, 1986 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28311661

RESUMO

Rates of leaf extension have been studied with electronic auxanometers at mid-altitude in the Austrian Alps, where both low and high altitude species co-occur. The results demonstrate a clear differentiation in the temperature responses of extension between these two groups of species. For the low or mid-altitude species of Achillea millefolium, Agrostis stolonifera, Poa alpina and Rumex arifolius, the average rate of leaf extension increases from 0.1 to 0.4 mm h-1 between 10 and 20° C. For the high-alpine species of Achillea erba-rotta ssp moschata, Poa alpina ssp vivipara and Polygonum viviparum the average rate of leaf extension was considerably lower from 0.016 to 0.064 mm h-1, between 10 and 20° C.Leaf extension in the lowland species was not observed below an average temperature of about 5° C, whilst no limit was observed for the upland species, down to a temperature of about 0° C.In the cases of the dicotyledons that were studied, leaf plus petiole shrinkage was observed to occur, for as much as 2 to 4 h, during periods of high water vapour pressure deficits. This response was not observed for the monocotyledons.The observations of leaf extension show that daily totals of extension in species from high altitudies will be much less sensitive to day, to day variations in local climate than will the species from low altitudes. The lowland species will have higher rates of extension during clear and warm weather conditions but lower rates in cold, cloudy weather.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA