RESUMO
A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.
Assuntos
Eritrócitos/citologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Adesão Celular , Forma Celular , Membrana Eritrocítica/química , Humanos , Plasmodium falciparum/metabolismo , Transporte Proteico , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , VirulênciaRESUMO
BACKGROUND: In cerebral malaria, the retina can be used to understand disease pathogenesis. The mechanisms linking sequestration, brain swelling, and death remain poorly understood. We hypothesized that retinal vascular leakage would be associated with brain swelling. METHODS: We used retinal angiography to study blood-retinal barrier integrity. We analyzed retinal leakage, histopathology, brain magnatic resonance imaging (MRI), and associations with death and neurological disability in prospective cohorts of Malawian children with cerebral malaria. RESULTS: Three types of retinal leakage were seen: large focal leak (LFL), punctate leak (PL), and vessel leak. The LFL and PL were associated with death (odds ratio [OR] = 13.20, 95% confidence interval [CI] = 5.21-33.78 and OR = 8.58, 95% CI = 2.56-29.08, respectively) and brain swelling (Pâ <â .05). Vessel leak and macular nonperfusion were associated with neurological disability (OR = 3.71, 95% CI = 1.26-11.02 and OR = 9.06, 95% CI = 1.79-45.90). Large focal leak was observed as an evolving retinal hemorrhage. A core of fibrinogen and monocytes was found in 39 (93%) white-centered hemorrhages. CONCLUSIONS: Blood-retina barrier breakdown occurs in 3 patterns in cerebral malaria. Associations between LFL, brain swelling, and death suggest that the rapid accumulation of cerebral hemorrhages, with accompanying fluid egress, may cause fatal brain swelling. Vessel leak, from barrier dysfunction, and nonperfusion were not associated with severe brain swelling but with neurological deficits, suggesting hypoxic injury in survivors.
Assuntos
Edema Encefálico , Malária Cerebral , Barreira Hematorretiniana/patologia , Edema Encefálico/complicações , Edema Encefálico/patologia , Criança , Humanos , Malária Cerebral/complicações , Estudos Prospectivos , Retina/patologiaRESUMO
A major determinant of pathogenicity in malaria caused by Plasmodium falciparum is the adhesion of parasite-infected erythrocytes to the vasculature or tissues of infected individuals. This occludes blood flow, leads to inflammation, and increases parasitemia by reducing spleen-mediated clearance of the parasite. This adhesion is mediated by PfEMP1, a multivariant family of around 60 proteins per parasite genome which interact with specific host receptors. One of the most common of these receptors is intracellular adhesion molecule-1 (ICAM-1), which is bound by 2 distinct groups of PfEMP1, A-type and B or C (BC)-type. Here, we present the structure of a domain from a B-type PfEMP1 bound to ICAM-1, revealing a complex binding site. Comparison with the existing structure of an A-type PfEMP1 bound to ICAM-1 shows that the 2 complexes share a globally similar architecture. However, while the A-type PfEMP1 bind ICAM-1 through a highly conserved binding surface, the BC-type PfEMP1 use a binding site that is more diverse in sequence, similar to how PfEMP1 interact with other human receptors. We also show that A- and BC-type PfEMP1 present ICAM-1 at different angles, perhaps influencing the ability of neighboring PfEMP1 domains to bind additional receptors. This illustrates the deep diversity of the PfEMP1 and demonstrates how variations in a single domain architecture can modulate binding to a specific ligand to control function and facilitate immune evasion.
Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Adesão Celular , Humanos , Malária Falciparum/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-AtividadeRESUMO
The pathology of Plasmodium falciparum malaria is largely defined by the cytoadhesion of infected erythrocytes to the microvascular endothelial lining. The complexity of the endothelial surface and the large range of interactions available for the infected erythrocyte via parasite-encoded adhesins make analysis of critical contributions during cytoadherence challenging to define. Here, we have explored supported membranes functionalized with two important adhesion receptors, ICAM1 or CD36, as a quantitative biomimetic surface to help understand the processes involved in cytoadherence. Parasitized erythrocytes bound to the receptor-functionalized membranes with high efficiency and selectivity under both static and flow conditions, with infected wild-type erythrocytes displaying a higher binding capacity than do parasitized heterozygous sickle cells. We further show that the binding efficiency decreased with increasing intermolecular receptor distance and that the cell-surface contacts were highly dynamic and increased with rising wall shear stress as the cell underwent a shape transition. Computer simulations using a deformable cell model explained the wall-shear-stress-induced dynamic changes in cell shape and contact area via the specific physical properties of erythrocytes, the density of adhesins presenting knobs, and the lateral movement of receptors in the supported membrane.
Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos CD36 , Adesão Celular , Eritrócitos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismoRESUMO
BACKGROUND: There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. METHODS: The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). RESULTS: None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. CONCLUSIONS: This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp- strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (number: ACTRN12617000824369 ; date: 06 June 2017).
Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Malária , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Austrália , Humanos , Malária/tratamento farmacológico , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Desenvolvimento de Vacinas , Vacinas Atenuadas/efeitos adversosRESUMO
Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1ß production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1ß release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33-NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.
Assuntos
Antimaláricos/farmacologia , Encéfalo/parasitologia , Sistemas de Liberação de Medicamentos/métodos , Interleucina-33/metabolismo , Malária Cerebral/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plasmodium falciparum/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hemeproteínas/metabolismo , Interleucina-1beta/biossíntese , Interleucina-33/antagonistas & inibidores , Macrófagos/metabolismo , Macrófagos/patologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transcriptoma/efeitos dos fármacosRESUMO
The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.
Assuntos
Encéfalo/patologia , Encéfalo/parasitologia , Modelos Animais de Doenças , Malária Cerebral/patologia , Malária Cerebral/parasitologia , Animais , Eritrócitos/parasitologia , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Plasmodium bergheiRESUMO
Japanese encephalitis virus (JEV) remains a leading cause of encephalitis, globally, which continues to grow in importance despite the availability of vaccines. Viral entry into the brain can occur via the blood-brain barrier (BBB), and inflammation at the BBB is a common final pathway in many brain infections. However, the role of the BBB during JEV infection and the contribution of the endothelial and astrocytic cell inflammation in facilitating virus entry into the brain are incompletely understood. We established a BBB model using human brain endothelial cells (HBECs) and human astrocytes. HBECs are polarised, and therefore the model was inoculated by JEV from the apical side to simulate the in vivo situation. The effects of JEV on the BBB permeability and release of inflammatory mediators from both apical and basolateral sides, representing the blood and the brain side respectively were investigated. JEV infected HBECs with limited active virus production, before crossing the BBB and infecting astrocytes. Control of JEV production by HBECs was associated with a significant increase in permeability, and with elevation of many host mediators, including cytokines, chemokines, cellular adhesion molecules, and matrix metalloproteases. When compared to the controls, significantly higher amounts of mediators were released from the apical side as opposed to the basolateral side. The increased release of mediators over time also correlated with increased BBB permeability. Treatment with dexamethasone led to a significant reduction in the release of interleukin 6 (IL6), C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) from the apical side with a reduction in BBB disruption and no change in JEV production. The results are consistent with the hypothesis that JEV infection of the BBB triggers the production of a range of host mediators from both endothelial cells and astrocytes, which control JEV production but disrupt BBB integrity thus allowing virus entry into the brain. Dexamethasone treatment controlled the host response and limited BBB disruption in the model without increasing JEV production, supporting a re-investigation of its use therapeutically.
Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/virologia , Encefalite Japonesa/metabolismo , Células Endoteliais/metabolismo , Anti-Inflamatórios/farmacologia , Astrócitos/virologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Células Endoteliais/virologia , Humanos , Interleucinas/genética , Interleucinas/metabolismoRESUMO
Plasmodium falciparum malaria infection is associated with an early marked increase in plasma von Willebrand factor (VWF) levels, together with a pathological accumulation of hyperreactive ultra-large VWF (UL-VWF) multimers. Given the established critical role of platelets in malaria pathogenesis, these increases in plasma VWF raise the intriguing possibility that VWF may play a direct role in modulating malaria pathogenesis. To address this hypothesis, we used an established murine model of experimental cerebral malaria (ECM), in which wild-type (WT) C57BL/6J mice were infected with Plasmodium berghei ANKA. In keeping with findings in children with P falciparum malaria, acute endothelial cell activation was an early and consistent feature in the murine model of cerebral malaria (CM), resulting in significantly increased plasma VWF levels. Despite the fact that murine plasma ADAMTS13 levels were not significantly reduced, pathological UL-VWF multimers were also observed in murine plasma following P berghei infection. To determine whether VWF plays a role in modulating the pathogenesis of CM in vivo, we further investigated P berghei infection in VWF(-/-) C57BL/6J mice. Clinical ECM progression was delayed, and overall survival was significantly prolonged in VWF(-/-) mice compared with WT controls. Despite this protection against ECM, no significant differences in platelet counts or blood parasitemia levels were observed between VWF(-/-) and WT mice. Interestingly, however, the degree of ECM-associated enhanced blood-brain barrier permeability was significantly attenuated in VWF(-/-) mice compared with WT controls. Given the significant morbidity and mortality associated with CM, these novel data may have direct translational significance.
Assuntos
Malária Cerebral/etiologia , Malária Cerebral/metabolismo , Fator de von Willebrand/metabolismo , Animais , Antígenos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Células Endoteliais/metabolismo , Humanos , Malária Cerebral/parasitologia , Malária Cerebral/prevenção & controle , Camundongos Endogâmicos C57BL , Modelos Biológicos , Peptídeos/metabolismo , Permeabilidade , Plasmodium berghei , Multimerização Proteica , Trombocitopenia/sangue , Trombocitopenia/complicaçõesRESUMO
BACKGROUND: To understand more about changes to the molecular components that occur when host endothelium interacts with Plasmodium falciparum-infected erythrocytes, a combined technique of protein separation (1D Blue-Native electrophoresis) and mass spectrometry of infected erythrocytes with endothelial cells (EC) in a co-culture system has been used. METHODS: Native proteins were extracted from co-cultures and identified by mass spectrometry. Proteomic data from different parasite strains, either adhesion proficient (to endothelial cells) or non-adherent, were analysed in parallel to reveal protein associations linked to cytoadherence. Informatic approaches were developed to facilitate this comparison. RESULTS: Blue-Native gel separation and LC/MS/MS identification revealed major differences in samples produced from endothelial cell co-culture with adherent and non-adherent parasite strains. This approach enabled us to identify protein associations seen only with the adhesion proficient parasite strain. CONCLUSIONS: The combination of proteomic and analytical approaches has identified differences between adherent and non-adherent parasite lines in co-culture with EC, providing potential candidates for complexes or associations formed during cytoadherence involved in cell structure, signalling and apoptosis.
Assuntos
Adesão Celular , Eletroforese , Células Endoteliais/parasitologia , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/fisiologia , Cromatografia Líquida , Técnicas de Cocultura , Humanos , Proteômica , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Plasmodium has a complex biology including the ability to interact with host signals modulating their function through cellular machinery. Tumor necrosis factor (TNF) elicits diverse cellular responses including effects in malarial pathology and increased infected erythrocyte cytoadherence. As TNF levels are raised during Plasmodium falciparum infection we have investigated whether it has an effect on the parasite asexual stage. METHODS: Flow cytometry, spectrofluorimetric determinations, confocal microscopy and PCR real time quantifications were employed for characterizing TNF induced effects and membrane integrity verified by wheat germ agglutinin staining. RESULTS: TNF is able to decrease intracellular parasitemia, involving calcium as a second messenger of the pathway. Parasites incubated for 48 h with TNF showed reduced erythrocyte invasion. Thus, TNF induced rises in intracellular calcium concentration, which were blocked by prior addition of the purinergic receptor agonists KN62 and A438079, or interfering with intra- or extracellular calcium release by thapsigargin or EGTA (ethylene glycol tetraacetic acid). Importantly, expression of PfPCNA1 which encodes the Plasmodium falciparum Proliferating-Cell Nuclear Antigen 1, decreased after P. falciparum treatment of TNF (tumor necrosis factor) or 6-Bnz cAMP (N(6)-benzoyladenosine-3',5'-cyclic monophosphate sodium salt). CONCLUSIONS: This is potentially interesting data showing the relevance of calcium in downregulating a gene involved in cellular proliferation, triggered by TNF. GENERAL SIGNIFICANCE: The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.
Assuntos
Antimaláricos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Eritrócitos/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Interações Hospedeiro-Parasita , Humanos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de TempoRESUMO
BACKGROUND: Sequestration of parasitized red blood cells from the peripheral circulation during an infection with Plasmodium falciparum is caused by an interaction between the parasite protein PfEMP1 and receptors on the surface of host endothelial cells, known as cytoadherence. Several lines of evidence point to a link between the pathology of severe malaria and cytoadherence, therefore blocking adhesion receptors involved in this process could be a good target to inhibit pRBC sequestration and prevent disease. In a malaria endemic setting this is likely to be used as an adjunct therapy by reversing existing cytoadherence. Two well-characterized parasite lines plus three recently derived patient isolates were tested for their cytoadherence to purified receptors (CD36 and ICAM-1) as well as endothelial cells. Monoclonal antibodies against human CD36 and ICAM-1 were used to inhibit and reverse infected erythrocyte binding in static and flow-based adhesion assays. RESULTS: Anti-ICAM-1 and CD36 monoclonal antibodies were able to inhibit and reverse P. falciparum binding of lab and recently adapted patient isolates in vitro. However, reversal of binding was incomplete and varied in its efficiency between parasite isolates. CONCLUSIONS: The results show that, as a proof of concept, disturbing existing ligand-receptor interactions is possible and could have potential therapeutic value for severe malaria. The variation seen in the degree of reversing existing binding with different parasite isolates and the incomplete nature of reversal, despite the use of high affinity inhibitors, suggest that anti-adhesion approaches as adjunct therapies for severe malaria may not be effective, and the focus may need to be on inhibitory approaches such as vaccines.
Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD36/imunologia , Adesão Celular , Endotélio/parasitologia , Molécula 1 de Adesão Intercelular/imunologia , Plasmodium falciparum/fisiologia , Adesão Celular/imunologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/imunologia , Receptor de Proteína C Endotelial/imunologia , Eritrócitos/citologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Eritropoetina/imunologia , Interações Hospedeiro-Parasita/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos Cíclicos/imunologia , Plasmodium falciparum/citologiaRESUMO
Plasmodium falciparum is unique among human malarias in its ability to sequester in post-capillary venules of host organs. The main variant antigens implicated are the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which can be divided into three major groups (A-C). Our study was a unique examination of sequestered populations of parasites for genetic background and expression of PfEMP1 groups. We collected post-mortem tissue from twenty paediatric hosts with pathologically different forms of cerebral malaria (CM1 and CM2) and parasitaemic controls (PC) to directly examine sequestered populations of parasites in the brain, heart and gut. Use of two different techniques to investigate this question produced divergent results. By quantitative PCR, group A var genes were upregulated in all three organs of CM2 and PC cases. In contrast, in CM1 infections displaying high levels of sequestration but negligible vascular pathology, there was high expression of group B var. Cloning and sequencing of var transcript tags from the same samples indicated a uniformly low expression of group A-like var. Generally, within an organ sample, 1-2 sequences were expressed at dominant levels. 23% of var tags were detected in multiple patients despite the P. falciparum infections being genetically distinct, and two tags were observed in up to seven hosts each with high expression in the brains of 3-4 patients. This study is a novel examination of the sequestered parasites responsible for fatal cerebral malaria and describes expression patterns of the major cytoadherence ligand in three organ-derived populations and three pathological states.
Assuntos
Regulação da Expressão Gênica , Malária Cerebral , Malária Falciparum , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Masculino , Proteínas de Protozoários/metabolismoRESUMO
Acquired protection from Plasmodium falciparum malaria takes years to develop, probably reflecting the ability of the parasites to evade immunity. A recent example of this is the binding of the Fc region of IgM to VAR2CSA-type PfEMP1. This interferes with specific IgG recognition and phagocytosis of opsonized infected erythrocytes (IEs) without compromising the placental IE adhesion mediated by this PfEMP1 type. IgM also binds via Fc to several other PfEMP1 proteins, where it has been proposed to facilitate rosetting (binding of uninfected erythrocytes to a central IE). To further dissect the functional role of Fc -mediated IgM binding to PfEMP1, we studied the PfEMP1 protein HB3VAR06, which mediates rosetting and binds IgM. Binding of IgM to this PfEMP1 involved the Fc domains Cµ3-Cµ4 in IgM and the penultimate DBL domain (DBLζ2) at the C-terminus of HB3VAR06. However, IgM binding did not inhibit specific IgG labelling of HB3VAR06 or shield IgG-opsonized IEs from phagocytosis. Instead, IgM was required for rosetting, and each pentameric IgM molecule could bind two HB3VAR06 molecules. Together, our data indicate that the primary function of Fc -mediated IgM binding in rosetting is not to shield IE from specific IgG recognition and phagocytosis as in VAR2CSA-type PfEMP1. Rather, the function appears to be strengthening of IE-erythrocyte interactions. In conclusion, our study provides new evidence on the molecular details and functional significance of rosetting, a long-recognized marker of parasites that cause severe P. falciparum malaria.
Assuntos
Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Imunoglobulina M/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas , Ligação ProteicaRESUMO
BACKGROUND: A number of experiments have previously indicated that Plasmodium falciparum-infected erythrocytes (pRBC) were able to sense host environment. The basis of this ability to detect external cues is not known but in screening signalling molecules from pRBC using commercial antibodies, a 34 kDa phosphorylated molecule that possesses such ability was identified. METHODS: The pRBC were exposed to different culture conditions and proteins were extracted for 1D or 2D gel electrophoresis followed by Western blot. The localization of 34 kDa protein was examined by biochemical fractionation followed by Western blot. High-resolution mass spectrometric analysis of immune precipitants was used to identify this protein and real-time quantitative reverse transcriptase polymerase chain reaction was used for detecting mRNA expression level. RESULTS: The 34 kDa protein was called PfAB4 has immediate responses (dephosphorylation and rapid turnover) to host environmental stimuli such as serum depletion, osmolality change and cytokine addition. PfAB4 is expressed constitutively throughout the erythrocytic lifecycle with dominant expression in trophozoites 30 h post-infection. Tumour necrosis factor (TNF) treatment induced a transient detectable dephosphorylation of PfAB4 in the ItG strain (2 min after addition) and the level of expression and phosphorylation returned to normal within 1-2 h. PfAB4 localized dominantly in pRBC cytoplasm, with a transient shift to the nucleus under TNF stimulation as shown by biochemical fractionation. High-resolution mass spectrometric analysis of immune precipitants of AB4 antibodies revealed a 34 kDa PfAB4 component as a mixture of proliferating cellular nuclear antigen-1 (PCNA1) and exported protein-2 (EXP2), along with a small number of other inconsistently identified peptides. Different parasite strains have different PfAB4 expression levels, but no significant association between mRNA and PfAB4 levels was seen, indicating that the differences may be at the post-transcriptional, presumably phosphorylation, level. A triple serine phosphorylated PCNA1 peptide was identified from the PfAB4 high expression strain only, providing further evidence that the identity of PfAB4 is PCNA1 in P. falciparum. CONCLUSION: A protein element in the human malaria parasite that responds to external cues, including the pro-inflammatory cytokine TNF have been discovered. Treatment results in a transient change in phosphorylation status of the response element, which also migrates from the parasite cytoplasm to the nucleus. The response element has been identified as PfPCNA1. This sensing response could be regulated by a parasite checkpoint system and be analogous to bacterial two-component signal transduction systems.
Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Transdução de Sinais/fisiologia , Dipeptídeos , Interações Hospedeiro-Parasita , Humanos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/análise , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Fatores de Necrose Tumoral/farmacologia , XantonasRESUMO
BACKGROUND: Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting the genomic variation of the Plasmodium falciparum population. METHODS: Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries assessed, as well as genetic regions under positive selection determined. RESULTS: Positive selection signals were identified within dhps, dhfr and gch1, all components of the parasite folate pathway associated with SP resistance. Sitting predominantly on a dhfr triple mutation background, a novel copy number increase of ~twofold was identified in the gch1 promoter. This copy number was almost fixed (96.8% frequency) in Malawi samples, but found at less than 45% frequency in other African populations, and distinct from a whole gene duplication previously reported in Southeast Asian parasites. CONCLUSIONS: SP resistance selection pressures have been retained in the Malawian population, with known resistance dhfr mutations at fixation, complemented by a novel gch1 promoter duplication. The effects of the duplication on the fitness costs of SP variants and resistance need to be elucidated.
Assuntos
Antimaláricos/uso terapêutico , Variação Genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Pré-Escolar , Combinação de Medicamentos , Resistência a Medicamentos , Feminino , Frequência do Gene , Genoma de Protozoário , Genótipo , Humanos , Lactente , Malaui , Masculino , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNARESUMO
BACKGROUND: Malarial retinopathy (MR) has diagnostic and prognostic value in children with Plasmodium falciparum cerebral malaria (CM). A clinicopathological correlation between observed retinal changes during life and the degree of sequestration of parasitized red blood cells was investigated in ocular and cerebral vessels at autopsy. METHODS: In 18 Malawian children who died from clinically defined CM, we studied the intensity of sequestration and the maturity of sequestered parasites in the retina, in nonretinal ocular tissues, and in the brain. RESULTS: Five children with clinically defined CM during life had other causes of death identified at autopsy, no MR, and scanty intracerebral sequestration. Thirteen children had MR and died from CM. MR severity correlated with percentage of microvessels parasitized in the retina, brain, and nonretinal tissues with some neuroectodermal components (all P < .01). In moderate/severe MR cases (n = 8), vascular congestion was more intense (ρ = 0.841; P < .001), sequestered parasites were more mature, and the quantity of extraerythrocytic hemozoin was higher, compared with mild MR cases (n = 5). CONCLUSIONS: These data provide a histopathological basis for the known correlation between degrees of retinopathy and cerebral dysfunction in CM. In addition to being a valuable tool for clinical diagnosis, retinal observations give important information about neurovascular pathophysiology in pediatric CM.
Assuntos
Oftalmopatias/patologia , Oftalmopatias/parasitologia , Malária Cerebral/patologia , Malária Falciparum/patologia , Plasmodium falciparum/isolamento & purificação , Retina/patologia , Retina/parasitologia , Encéfalo/parasitologia , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Histocitoquímica , Humanos , Lactente , Recém-Nascido , Malária Cerebral/complicações , Malaui , Masculino , Carga ParasitáriaRESUMO
Cerebral malaria (CM) is a major cause of mortality in African children and the mechanisms underlying its development, namely how malaria-infected erythrocytes (IEs) cause disease and why the brain is preferentially affected, remain unclear. Brain microhemorrhages in CM suggest a clotting disorder, but whether this phenomenon is important in pathogenesis is debated. We hypothesized that localized cerebral microvascular thrombosis in CM is caused by a decreased expression of the anticoagulant and protective receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR) and that low constitutive expression of these regulatory molecules in the brain make it particularly vulnerable. Autopsies from Malawian children with CM showed cerebral fibrin clots and loss of EPCR, colocalized with sequestered IEs. Using a novel assay to examine endothelial phenotype ex vivo using subcutaneous microvessels, we demonstrated that loss of EPCR and TM at sites of IE cytoadherence is detectible in nonfatal CM. In contrast, although clotting factor activation was seen in the blood of CM patients, this was compensated and did not disseminate. Because of the pleiotropic nature of EPCR and TM, these data implicate disruption of the endothelial protective properties at vulnerable sites and particularly in the brain, linking coagulation and inflammation with IE sequestration.
Assuntos
Antígenos CD/metabolismo , Coagulação Sanguínea/fisiologia , Encéfalo/parasitologia , Endotélio Vascular/metabolismo , Inflamação , Malária Cerebral/parasitologia , Receptores de Superfície Celular/metabolismo , Antígenos CD/fisiologia , População Negra , Coagulação Sanguínea/imunologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Regulação para Baixo , Receptor de Proteína C Endotelial , Eritrócitos/parasitologia , Eritrócitos/patologia , Feminino , Humanos , Lactente , Inflamação/metabolismo , Inflamação/parasitologia , Malária Cerebral/sangue , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malaui , Masculino , Receptores de Superfície Celular/fisiologia , Trombomodulina/metabolismo , Trombomodulina/fisiologiaRESUMO
The adhesion of infected red blood cells (iRBCs) to human endothelium is considered a key event in the pathogenesis of cerebral malaria and other life-threatening complications caused by the most prevalent malaria parasite Plasmodium falciparum. In the past 30 years, 14 endothelial receptors for iRBCs have been identified. Exposing 10 additional surface proteins of endothelial cells to a mixture of P. falciparum isolates from three Ghanaian malaria patients, we identified seven new iRBC receptors, all expressed in brain vessels. This finding strongly suggests that endothelial binding of P. falciparumâ iRBCs is promiscuous and may use a combination of endothelial surface moieties.
Assuntos
Adesão Celular , Células Endoteliais/fisiologia , Eritrócitos/fisiologia , Eritrócitos/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Gana , Humanos , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/parasitologiaRESUMO
Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like ß3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.