Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 129(10): 2106-19, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068536

RESUMO

The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.


Assuntos
Proteínas de Transporte/genética , Chlamydomonas reinhardtii/genética , Flagelos/genética , Tubulina (Proteína)/genética , Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/genética , Cílios/metabolismo , Flagelos/metabolismo , Fenótipo , Ligação Proteica , Tubulina (Proteína)/metabolismo
2.
Hum Mol Genet ; 24(14): 3994-4005, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25877302

RESUMO

Recent studies identified a previously uncharacterized gene C5ORF42 (JBTS17) as a major cause of Joubert syndrome (JBTS), a ciliopathy associated with cerebellar abnormalities and other birth defects. Here we report the first Jbts17 mutant mouse model, Heart Under Glass (Hug), recovered from a forward genetic screen. Exome sequencing identified Hug as a S235P missense mutation in the mouse homolog of JBTS17 (2410089e03rik). Hug mutants exhibit multiple birth defects typical of ciliopathies, including skeletal dysplasia, polydactyly, craniofacial anomalies, kidney cysts and eye defects. Some Hug mutants exhibit congenital heart defects ranging from mild pulmonary stenosis to severe pulmonary atresia. Immunostaining showed JBTS17 is localized in the cilia transition zone. Fibroblasts from Hug mutant mice and a JBTS patient with a JBTS17 mutation showed ciliogenesis defects. Significantly, Hug mutant fibroblasts showed loss of not only JBTS17, but also NPHP1 and CEP290 from the cilia transition zone. Hug mutants exhibited reduced ciliation in the cerebellum. This was associated with reduction in cerebellar foliation. Using a fibroblast wound-healing assay, we showed Hug mutant cells cannot establish cell polarity required for directional cell migration. However, stereocilia patterning was grossly normal in the cochlea, indicating planar cell polarity is not markedly affected. Overall, we showed the JBTS pathophysiology is replicated in the Hug mutant mice harboring a Jbts17 mutation. Our findings demonstrate JBTS17 is a cilia transition zone component that acts upstream of other Joubert syndrome associated transition zone proteins NPHP1 and CEP290, indicating its importance in the pathogenesis of Joubert syndrome.


Assuntos
Doenças Cerebelares/genética , Cerebelo/anormalidades , Proteínas de Membrana/genética , Retina/anormalidades , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Polaridade Celular , Células Cultivadas , Doenças Cerebelares/patologia , Cerebelo/patologia , Cílios , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez , Transporte Proteico/genética , Retina/patologia
3.
Metabolites ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34564416

RESUMO

Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.

4.
Mol Metab ; 45: 101160, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400973

RESUMO

OBJECTIVE: The immediate signals that couple exercise to metabolic adaptations are incompletely understood. Nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) produces reactive oxygen species (ROS) and plays a significant role in metabolic and vascular adaptation during stress conditions. Our objective was to determine the role of Nox4 in exercise-induced skeletal muscle metabolism. METHODS: Mice were subjected to acute exercise to assess their immediate responses. mRNA and protein expression responses to Nox4 and hydrogen peroxide (H2O2) were measured by qPCR and immunoblotting. Functional metabolic flux was measured via ex vivo fatty acid and glucose oxidation assays using 14C-labeled palmitate and glucose, respectively. A chronic exercise regimen was also utilized and the time to exhaustion along with key markers of exercise adaptation (skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase activity) were measured. Endothelial-specific Nox4-deficient mice were then subjected to the same acute exercise regimen and their subsequent substrate oxidation was measured. RESULTS: We identified key exercise-responsive metabolic genes that depend on H2O2 and Nox4 using catalase and Nox4-deficient mice. Nox4 was required for the expression of uncoupling protein 3 (Ucp3), hexokinase 2 (Hk2), and pyruvate dehydrogenase kinase 4 (Pdk4), but not the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α). Global Nox4 deletion resulted in decreased UCP3 protein expression and impaired glucose and fatty acid oxidization in response to acute exercise. Furthermore, Nox4-deficient mice demonstrated impaired adaptation to chronic exercise as measured by the time to exhaustion and activity of skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase. Importantly, mice deficient in endothelial-Nox4 similarly demonstrated attenuated glucose and fatty acid oxidation following acute exercise. CONCLUSIONS: We report that H2O2 and Nox4 promote immediate responses to exercise in skeletal muscle. Glucose and fatty acid oxidation were blunted in the Nox4-deficient mice post-exercise, potentially through regulation of UCP3 expression. Our data demonstrate that endothelial-Nox4 is required for glucose and fatty acid oxidation, suggesting inter-tissue cross-talk between the endothelium and skeletal muscle in response to exercise.


Assuntos
Músculo Esquelético/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Ácidos Graxos/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , NADPH Oxidase 4/deficiência , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Transcriptoma , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo
5.
Am J Physiol Endocrinol Metab ; 299(1): E23-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20442321

RESUMO

Pancreatic islet beta-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since beta-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in beta-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates beta-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 beta-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits beta3B and mu3B are expressed in beta-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that beta-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to beta-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in beta-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 delta-subunit expression. Our findings suggest that beta-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células Secretoras de Insulina/fisiologia , Vesículas Sinápticas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Western Blotting , Brefeldina A/farmacologia , Proteínas de Ligação a DNA/genética , Imuno-Histoquímica , Insulina/fisiologia , Microscopia Confocal , Células PC12 , Inibidores da Síntese de Proteínas/farmacologia , RNA/química , RNA/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/fisiologia
6.
Mol Biol Cell ; 17(6): 2626-35, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16571668

RESUMO

Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Chlamydomonas reinhardtii/fisiologia , Flagelos/fisiologia , Proteínas de Protozoários/fisiologia , Sequência de Aminoácidos , Animais , Movimento Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Sequência Conservada , Dados de Sequência Molecular , Proteínas de Plantas , Regeneração
7.
J Cell Biol ; 218(6): 2051-2070, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31092556

RESUMO

Nearly all motile cilia have a "9+2" axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.


Assuntos
Proteínas de Algas/metabolismo , Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteoma/análise , Proteínas de Algas/genética , Movimento Celular , Chlamydomonas/genética , Chlamydomonas/crescimento & desenvolvimento , Espectrometria de Massas , Proteínas dos Microtúbulos/genética , Mutação , Proteoma/isolamento & purificação
8.
Mol Biol Cell ; 16(8): 3692-704, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15944223

RESUMO

A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIalpha (PI4KIIalpha). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIalpha in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIalpha was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIalpha normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIalpha content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIalpha was further explored by PI4KIIalpha knockdown experiments. Reduction of the cellular content of PI4KIIalpha strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIalpha is present on AP-3 organelles where it regulates AP-3 function.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células Cultivadas , Hipocampo/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteômica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos
9.
Mol Biol Cell ; 15(4): 1991-2002, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14718558

RESUMO

Despite the apparent overall structural stability of the nuclear pore complex during interphase, at least two nucleoporins have been shown to move dynamically on and off the pore. It is not yet certain what contribution nucleoporin mobility makes to the process of nuclear transport or how such mobility is regulated. Previously, we showed that Nup98 dynamically interacts with the NPC as well as bodies within the nucleus in a transcription-dependent manner. We have extended our studies of dynamics to include Nup153, another mobile nucleoporin implicated in RNA export. In both cases, we found that although only one domain is essential for NPC localization, other regions of the protein significantly affect the stability of association with the pore. Interestingly, like Nup98, the exchange of Nup153 on and off the pore is inhibited when transcription by Pol I and Pol II is blocked. We have mapped the regions required to link Nup98 and Nup153 mobility to transcription and found that the requirements differ depending on which polymerases are inhibited. Our data support a model whereby transcription of RNA is coupled to nucleoporin mobility, perhaps ultimately linking transport of RNAs to a cycle of remodeling at the nuclear pore basket.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Cricetinae , DNA/química , Dactinomicina/farmacologia , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Luz , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Estrutura Terciária de Proteína , RNA/química , Fatores de Tempo
10.
Cancer Res ; 63(14): 4218-24, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12874029

RESUMO

Pituitary adenomas cause significant morbidity caused by compression of regional structures or the inappropriate expression of pituitary hormones. However, little is known about the molecular changes that contribute to the development of these tumors. To investigate these changes, we recently used cDNA microarray analysis to identify several genes with altered expression patterns in pituitary adenomas. The folate receptor (FRalpha) was significantly overexpressed in clinically nonfunctional (NF) adenomas but not in functional adenomas (adrenocorticorticotropic hormone, growth hormone, and prolactin). FRalpha is a high affinity folate transporter that is overexpressed by other tumors and could provide a growth advantage to cells that express it. Analysis of FRalpha expression by Western blotting confirmed that FRalpha protein was specifically overexpressed in NF tumors. The FRalpha was capable of binding folates from measurements of [(3)H] folic acid binding, indicating that the overexpressed receptor was properly folded and may mediate vitamin uptake. Comparison of protein and specific [(3)H] folic acid binding levels in subtypes of NF adenomas suggested that the immunohistochemically negative adenomas produced more properly folded FRalpha than adenomas that stained positively for anterior pituitary hormones. Finally, immunohistochemistry demonstrated that FRalpha was specifically expressed in NF adenoma cells. These results demonstrate that overexpression of FRalpha mRNA by NF pituitary adenomas results in production of properly folded FRalpha protein, may mediate vitamin transport, and could potentially facilitate the growth of these tumors.


Assuntos
Adenoma/metabolismo , Proteínas de Transporte/biossíntese , Neoplasias Hipofisárias/metabolismo , Receptores de Superfície Celular , Adenoma/genética , Adulto , Idoso , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Criança , Feminino , Receptores de Folato com Âncoras de GPI , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Curr Biol ; 25(12): 1583-93, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26051893

RESUMO

Intraflagellar transport (IFT) moves IFT trains carrying cargoes from the cell body into the flagellum and from the flagellum back to the cell body. IFT trains are composed of complexes IFT-A and IFT-B and cargo adaptors such as the BBSome. The IFT-B core proteins IFT74 and IFT81 interact directly through central and C-terminal coiled-coil domains, and recently it was shown that the N termini of these proteins form a tubulin-binding module important for ciliogenesis. To investigate the function of IFT74 and its domains in vivo, we have utilized Chlamydomonas reinhardtii ift74 mutants. In a null mutant, lack of IFT74 destabilized IFT-B, leading to flagella assembly failure. In this null background, expression of IFT74 lacking 130 amino acids (aa) of the charged N terminus stabilized IFT-B and promoted slow assembly of nearly full-length flagella. A further truncation (lacking aa 1-196, including part of coiled-coil 1) also stabilized IFT-B, but failure in IFT-A/IFT-B interaction within the pool at the base of the flagellum prevented entry of IFT-A into the flagellum and led to severely decreased IFT injection frequency and flagellar-assembly defects. Decreased IFT-A in these short flagella resulted in aggregates of stalled IFT-B in the flagella. We conclude that IFT74 is required to stabilize IFT-B; aa 197-641 are sufficient for this function in vivo. The N terminus of IFT74 may be involved in, but is not required for, tubulin entry into flagella. It is required for association of IFT-A and IFT-B at the base of the flagellum and flagellar import of IFT-A.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas do Citoesqueleto/metabolismo , Flagelos/metabolismo , Transporte Biológico , Proteínas do Citoesqueleto/genética , Flagelos/genética , Mutação , Ligação Proteica
12.
Sci Rep ; 5: 14096, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365165

RESUMO

The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.


Assuntos
Cílios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Cílios/química , Cílios/ultraestrutura , Proteínas do Citoesqueleto , Genes Reporter , Humanos , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo
13.
Mol Biol Cell ; 26(18): 3140-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26224312

RESUMO

Motile cilia and flagella play critical roles in fluid clearance and cell motility, and dysfunction commonly results in the pediatric syndrome primary ciliary dyskinesia (PCD). CFAP221, also known as PCDP1, is required for ciliary and flagellar function in mice and Chlamydomonas reinhardtii, where it localizes to the C1d projection of the central microtubule apparatus and functions in a complex that regulates flagellar motility in a calcium-dependent manner. We demonstrate that the genes encoding the mouse homologues of the other C. reinhardtii C1d complex members are primarily expressed in motile ciliated tissues, suggesting a conserved function in mammalian motile cilia. The requirement for one of these C1d complex members, CFAP54, was identified in a mouse line with a gene-trapped allele. Homozygous mice have PCD characterized by hydrocephalus, male infertility, and mucus accumulation. The infertility results from defects in spermatogenesis. Motile cilia have a structural defect in the C1d projection, indicating that the C1d assembly mechanism requires CFAP54. This structural defect results in decreased ciliary beat frequency and perturbed cilia-driven flow. This study identifies a critical role for CFAP54 in proper assembly and function of mammalian cilia and flagella and establishes the gene-trapped allele as a new model of PCD.


Assuntos
Cílios/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas/fisiologia , Animais , Movimento Celular/fisiologia , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelos/fisiologia , Infertilidade Masculina/genética , Síndrome de Kartagener , Masculino , Camundongos , Microtúbulos/genética , Dados de Sequência Molecular , Proteínas/genética , Proteínas/metabolismo , Espermatogênese/genética
14.
Dev Cell ; 30(5): 492-3, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25203204

RESUMO

Cilia and flagella are assembled and maintained by the motor-driven, bidirectional traffic of large protein complexes in a process termed intraflagellar transport (IFT). In this issue of Developmental Cell, Liang et al. (2014) report that IFT is regulated in part by the phosphorylation status of the kinesin-II subunit FLA8/KIF3B.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/fisiologia , Regulação da Expressão Gênica de Plantas , Cinesinas/metabolismo , Animais
15.
Curr Protoc Cell Biol ; Chapter 3: 3.41.1-3.41.9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23728744

RESUMO

A simple, scalable, and fast procedure for the isolation of Chlamydomonas flagella is described. Chlamydomonas can be synchronously deflagellated by treatment with chemicals, pH shock, or mechanical shear. The Basic Protocol describes the procedure for flagellar isolation using dibucaine to induce flagellar abscission; we also describe the pH shock method as an Alternate Protocol when flagellar regeneration is desirable. Sub-fractionation of the isolated flagella into axonemes and the membrane + matrix fraction is described in a Support Protocol.


Assuntos
Fracionamento Celular/métodos , Chlamydomonas/ultraestrutura , Flagelos/ultraestrutura , Axonema/ultraestrutura , Processos de Crescimento Celular , Membrana Celular/ultraestrutura , Dibucaína , Concentração de Íons de Hidrogênio , Estresse Mecânico
16.
J Cell Biol ; 199(1): 151-67, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027906

RESUMO

The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34°C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34°C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited.


Assuntos
Flagelos/metabolismo , Transporte Biológico , Células Cultivadas , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonagem Molecular , Dineínas/genética , Dineínas/isolamento & purificação , Dineínas/metabolismo , Flagelos/genética , Cinética , Mutação , Temperatura
17.
Mol Biol Cell ; 22(24): 4854-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21998198

RESUMO

Dysbindin assembles into the biogenesis of lysosome-related organelles complex 1 (BLOC-1), which interacts with the adaptor protein complex 3 (AP-3), mediating a common endosome-trafficking route. Deficiencies in AP-3 and BLOC-1 affect synaptic vesicle composition. However, whether AP-3-BLOC-1-dependent sorting events that control synapse membrane protein content take place in cell bodies upstream of nerve terminals remains unknown. We tested this hypothesis by analyzing the targeting of phosphatidylinositol-4-kinase type II α (PI4KIIα), a membrane protein present in presynaptic and postsynaptic compartments. PI4KIIα copurified with BLOC-1 and AP-3 in neuronal cells. These interactions translated into a decreased PI4KIIα content in the dentate gyrus of dysbindin-null BLOC-1 deficiency and AP-3-null mice. Reduction of PI4KIIα in the dentate reflects a failure to traffic from the cell body. PI4KIIα was targeted to processes in wild-type primary cultured cortical neurons and PC12 cells but failed to reach neurites in cells lacking either AP-3 or BLOC-1. Similarly, disruption of an AP-3-sorting motif in PI4KIIα impaired its sorting into processes of PC12 and primary cultured cortical neuronal cells. Our findings indicate a novel vesicle transport mechanism requiring BLOC-1 and AP-3 complexes for cargo sorting from neuronal cell bodies to neurites and nerve terminals.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Proteínas de Transporte/metabolismo , Lectinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/genética , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Disbindina , Proteínas Associadas à Distrofina , Peptídeos e Proteínas de Sinalização Intracelular , Lectinas/genética , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Células PC12 , Ratos , Membranas Sinápticas/genética , Vesículas Transportadoras/genética
18.
J Cell Biol ; 190(5): 927-40, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20819941

RESUMO

Mutations in human CEP290 cause cilia-related disorders that range in severity from isolated blindness to perinatal lethality. Here, we describe a Chlamydomonas reinhardtii mutant in which most of the CEP290 gene is deleted. Immunoelectron microscopy indicated that CEP290 is located in the flagellar transition zone in close association with the prominent microtubule-membrane links there. Ultrastructural analysis revealed defects in these microtubule-membrane connectors, resulting in loss of attachment of the flagellar membrane to the transition zone microtubules. Biochemical analysis of isolated flagella revealed that the mutant flagella have abnormal protein content, including abnormal levels of intraflagellar transport proteins and proteins associated with ciliopathies. Experiments with dikaryons showed that CEP290 at the transition zone is dynamic and undergoes rapid turnover. The results indicate that CEP290 is required to form microtubule-membrane linkers that tether the flagellar membrane to the transition zone microtubules, and is essential for controlling flagellar protein composition.


Assuntos
Estruturas Celulares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Animais , Transporte Biológico , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiologia , Cílios/metabolismo , Flagelos/metabolismo , Flagelos/fisiologia , Flagelos/ultraestrutura , Deleção de Genes , Membranas/metabolismo , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/genética , Mutação
19.
J Biol Chem ; 284(3): 1790-802, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19010779

RESUMO

The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 ( Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19, 1415-1426 ). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIalpha inclusion into AP-3 complexes. BLOC-1, PI4KIIalpha, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIalpha, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIalpha with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIalpha along the endocytic route.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Complexo 3 de Proteínas Adaptadoras/genética , Animais , Endocitose/genética , Endossomos/genética , Endossomos/patologia , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética
20.
Mol Biol Cell ; 19(4): 1415-26, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18256276

RESUMO

The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endossomos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Domínio Catalítico/genética , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Células PC12 , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA