Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(20): 4057-4067, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37717145

RESUMO

Since its emergence, the COVID-19 threat has been sustained by a series of transmission waves initiated by new variants of the SARS-CoV-2 virus. Some of these arise with higher transmissivity and/or increased disease severity. Here, we use molecular dynamics simulations to examine the modulation of the fundamental interactions between the receptor binding domain (RBD) of the spike glycoprotein and the host cell receptor (human angiotensin-converting enzyme 2 [hACE2]) arising from Omicron variant mutations (BA.1 and BA.2) relative to the original wild-type strain. Our key findings are that glycans play a vital role at the RBD···hACE2 interface for the Omicrons, and the interplay between glycans and sequence mutations leads to enhanced binding. We find significant structural differences in the complexes, which overall bring the spike protein and its receptor into closer proximity. These are consistent with and attributed to the higher positive charge on the RBD conferred by BA.1 and BA.2 mutations relative to the wild-type. However, further differences between subvariants BA.1 and BA.2 (which have equivalent RBD charges) are also evident: mutations reduce interdomain interactions between the up chain and its clockwise neighbor chain in particular for the latter, resulting in enhanced flexibility for BA.2. Consequently, we see occurrence of additional close contacts in one replica of BA.2, which include binding to hACE2 by a second RBD in addition to the up chain. Although this motif is not seen in BA.1, we find that the Omicrons can directly/indirectly bind a down-RBD to hACE2 through glycans: the role of the glycan on N90 of hACE2 switches from inhibiting to facilitating the binding to Omicron spike protein via glycan-protein lateral interactions. These structural and electrostatic differences offer further insight into the mechanisms by which viral mutations modulate host cell binding and provide a biophysical basis for evolutionary driving forces.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Polissacarídeos , Ligação Proteica
2.
Biophys J ; 122(8): 1548-1556, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36945777

RESUMO

The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.


Assuntos
Cloretos , Rodopsina , Cloretos/química , Ânions , Simulação de Dinâmica Molecular , Eletrônica
3.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272571

RESUMO

Nuclear quantum phenomena beyond the Born-Oppenheimer approximation are known to play an important role in a growing number of chemical and biological processes. While there exists no unique consensus on a rigorous and efficient implementation of coupled electron-nuclear quantum dynamics, it is recognized that these problems scale exponentially with system size on classical processors and, therefore, may benefit from quantum computing implementations. Here, we introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers, based upon the Nuclear-Electronic Orbital (NEO) approach. We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework, thereby reducing the Hamiltonian dimension, number of qubits, gates, and measurements needed for calculations. We also develop parameter transfer and initialization techniques, which improve convergence behavior relative to conventional initialization. These techniques are applied to H2 and malonaldehyde for which results agree with NEO full configuration interaction and NEO complete active space configuration interaction benchmarks for ground state energy to within 10-6 hartree and entanglement entropy to within 10-4. These implementations therefore significantly reduce resource requirements for full quantum simulations of molecules on near-term quantum devices while maintaining high accuracy.

4.
Biophys J ; 121(11): 2014-2026, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527400

RESUMO

Interactions between ions and water at hydrophobic interfaces within ion channels and nanopores are suggested to play a key role in the movement of ions across biological membranes. Previous molecular-dynamics simulations have shown that anion affinity for aqueous/hydrophobic interfaces can be markedly influenced by including polarization effects through an electronic continuum correction. Here, we designed a model biomimetic nanopore to imitate the polar pore openings and hydrophobic gating regions found in pentameric ligand-gated ion channels. Molecular-dynamics simulations were then performed using both a non-polarizable force field and the electronic-continuum-correction method to investigate the behavior of water, Na+, and Cl- ions confined within the hydrophobic region of the nanopore. Number-density distributions revealed preferential Cl- adsorption to the hydrophobic pore walls, with this interfacial layer largely devoid of Na+. Free-energy profiles for Na+ and Cl- permeating the pore also display an energy-barrier reduction associated with the localization of Cl- to this hydrophobic interface, and the hydration-number profiles reflect a corresponding reduction in the first hydration shell of Cl-. Crucially, these ion effects were only observed through inclusion of effective polarization, which therefore suggests that polarizability may be essential for an accurate description for the behavior of ions and water within hydrophobic nanoscale pores, especially those that conduct Cl-.


Assuntos
Nanoporos , Biomimética , Interações Hidrofóbicas e Hidrofílicas , Íons , Sódio , Água/química
5.
Biophys J ; 121(3): 491-501, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954157

RESUMO

The skin-associated microbiome plays an important role in general well-being and in a variety of treatable skin conditions. In this regard, endogenous antimicrobial peptides have both a direct and indirect role in determining the composition of the microbiota. We demonstrate here that certain small molecular species can amplify the antimicrobial potency of naturally occurring antimicrobial peptides. In this study, we have used niacinamide, a form of vitamin B3 naturally found in foods and widely used in cosmetic skincare products, and two of its structural analogs, to investigate their cooperativity with the human antimicrobial peptide LL37 on the bacterium Staphylococcus aureus. We observed a clear synergistic effect of niacinamide and, to some extent, N-methylnicotinamide, whereas isonicotinamide showed no significant cooperativity with LL37. Adaptively biased molecular dynamics simulations using simplified model membrane substrates and single peptides revealed that these molecules partition into the headgroup region of an anionic bilayer used to mimic the bacterial membrane. The simulated effects on the physical properties of the simulated model membrane are well correlated with experimental activity observed in real biological assays despite the simplicity of the model. In contrast, these molecules have little effect on zwitterionic bilayers that mimic a mammalian membrane. We conclude that niacinamide and N-methylnicotinamide can therefore potentiate the activity of host peptides by modulating the physical properties of the bacterial membrane, and to a lesser extent through direct interactions with the peptide. The level of cooperativity is strongly dependent on the detailed chemistry of the additive, suggesting an opportunity to fine-tune the behavior of host peptides.


Assuntos
Anti-Infecciosos , Bicamadas Lipídicas , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Humanos , Bicamadas Lipídicas/química , Mamíferos , Niacinamida , Peptídeos/química
6.
J Chem Inf Model ; 61(1): 263-269, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33350828

RESUMO

Cyclic peptides have the potential to bind to challenging targets, which are undruggable with small molecules, but their application is limited by low membrane permeability. Here, using a series of cyclic pentapeptides, we showed that established physicochemical criteria of permeable peptides are heavily violated. We revealed that a dominant core conformation, stabilized by amides' shielding pattern, could guide the design of novel compounds. As a result, counter-intuitive strategies, such as incorporation of polar residues, can be beneficial for permeability. We further find that core globularity is a promising descriptor, which can extend the capability of standard predictive models.


Assuntos
Peptídeos Cíclicos , Peptídeos , Permeabilidade da Membrana Celular , Conformação Molecular , Peptídeos Cíclicos/metabolismo , Permeabilidade
7.
Phys Rev Lett ; 122(20): 208103, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172786

RESUMO

It is shown that the tendency of an archetypal antimicrobial peptide to insert into and perforate a simple lipid bilayer is strongly modulated by tensile stress in the membrane. The results, obtained through molecular dynamics simulations, have been demonstrated with several lipid compositions and appear to be general, although quantitative details differ. The findings imply that the potency of antimicrobial peptides may not be a purely intrinsic chemical property and, instead, depends on the mechanical state of the target membrane.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Modelos Químicos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Simulação por Computador , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química , Resistência à Tração
8.
J Chem Phys ; 148(24): 241744, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960328

RESUMO

Simulation and data analysis have evolved into powerful methods for discovering and understanding molecular modes of action and designing new compounds to exploit these modes. The combination provides a strong impetus to create and exploit new tools and techniques at the interfaces between physics, biology, and data science as a pathway to new scientific insight and accelerated discovery. In this context, we explore the rational design of novel antimicrobial peptides (short protein sequences exhibiting broad activity against multiple species of bacteria). We show how datasets can be harvested to reveal features which inform new design concepts. We introduce new analysis and visualization tools: a graphical representation of the k-mer spectrum as a fundamental property encoded in antimicrobial peptide databases and a data-driven representation to illustrate membrane binding and permeation of helical peptides.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Mineração de Dados , Bases de Dados de Proteínas , Membranas/química , Disciplinas das Ciências Naturais , Bactérias/metabolismo , Descoberta de Drogas , Membranas/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(20): 6341-6, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941394

RESUMO

Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water's crystalline phases and amorphous states. We show that many-body responses arising from water's electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a "strong coupling" approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water's complexity and its molecular origin, predicting water's signature physical properties from ice, through liquid-vapor coexistence, to the critical point.

10.
Phys Chem Chem Phys ; 19(9): 6768-6776, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28217780

RESUMO

The structure and electronic properties of a novel cobalt half sandwich complex of cyclopentadiene (Cp) and diaminonaphthalene (DAnap) [CpCo(DAnap)] are described and compared to the previously reported diaminobenzene derivative [CpCo(DAbnz)] in view of their potential for (opto)electronic device application. Both complexes show stable redox processes, tunable through the diaminoacene ligand, and show strong absorption in the visible region, with additional transitions stretching into the near infrared (NIR). CpCo(DAnap) crystallises with a particularly large unit cell (9301 Å3), comprising 32 molecules, with a gradual rotation over 8 molecules along the long c-axis. In the solid state the balance of the optical transitions in both complexes is reversed, with a suppression of the visible band and an enhancement of the NIR band, attributed to extensive intermolecular electronic interaction. In the case of CpCo(DAnap), highly crystalline thin films could be formed under physical vapor deposition, which show a photocurrent response stretching into the NIR, and p-type semiconductor behavior in field effect transistors with mobility values of the order 1 × 10-4 cm2 V-1 s-1. The device performance is understood through investigation of the morphology of the grown films.

11.
Proc Natl Acad Sci U S A ; 110(22): 8918-23, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671080

RESUMO

Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration. The results offer a mechanistic basis for membrane poration as a generic physicochemical process of cooperative and continuous peptide recruitment in the available phospholipid matrix.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bicamadas Lipídicas/química , Nanotecnologia/métodos , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfolipídeos/química , Engenharia de Proteínas , Espectrometria de Massa de Íon Secundário
12.
Phys Chem Chem Phys ; 17(14): 8660-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25715668

RESUMO

We determine the molecular structure and orientation at the liquid-vapour interface of water using an electronically coarse grained model constructed to include all long-range electronic responses within Gaussian statistics. The model, fit to the properties of the isolated monomer and dimer, is sufficiently responsive to generate the temperature dependence of the surface tension from ambient conditions to the critical point. Acceptor hydrogen bonds are shown to be preferentially truncated at the free surface under ambient conditions and a related asymmetry in hydrogen bonding preference is identified in bulk water. We speculate that this bonding asymmetry in bulk water is the microscopic origin of the observed surface structure.

13.
J Biol Chem ; 288(28): 20162-72, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23737519

RESUMO

Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.


Assuntos
Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas/antagonistas & inibidores , Catelicidinas/química , Catelicidinas/metabolismo , Cecropinas/antagonistas & inibidores , Cecropinas/química , Cecropinas/metabolismo , Dicroísmo Circular , Relação Dose-Resposta a Droga , Hemólise/efeitos dos fármacos , Humanos , Magaininas/antagonistas & inibidores , Magaininas/química , Magaininas/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Am Chem Soc ; 135(14): 5399-407, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23463898

RESUMO

Hybridization of complementary nucleic acid strands is fundamental to nearly all molecular bioanalytical methods ranging from polymerase chain reaction and DNA biosensors to next generation sequencing. For nucleic acid amplification methods, controlled DNA denaturation and renaturation is particularly essential and achieved by cycling elevated temperatures. Although this is by far the most used technique, the management of rapid temperature changes requires bulky instrumentation and intense power supply. These factors so far precluded the development of true point-of-care tests for molecular diagnostics. To overcome this limitation we explored the possibility of using electrochemical means to control reversible DNA hybridization by using the electroactive intercalator daunomycin (DM). We show that redox-state switching of DM altered its properties from DNA binding to nonbinding, under otherwise constant conditions, and thus altered the thermodynamic stability of duplex DNA. The operational principle was demonstrated using complementary synthetic 20mer and 40mer DNA oligonucleotides. Absorbance-based melting curve analysis revealed significantly higher melting temperatures for DNA in the presence of oxidized compared to chemically reduced DM. This difference was exploited to drive cyclic electrochemically controlled denaturation and renaturation. Analysis with in situ UV-vis and circular dichroism spectroelectrochemistry, as two independent techniques, indicated that up to 80% of the DNA was reversibly hybridized. This remarkable demonstration of electrochemical control of five cycles of DNA denaturation and renaturation, under otherwise constant conditions, could have wide-ranging implications for the future development of miniaturized analytical systems for molecular diagnostics and beyond.


Assuntos
DNA/química , Daunorrubicina/química , Estrutura Molecular , Técnicas de Amplificação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Oxirredução , Temperatura
15.
J Phys Chem Lett ; 14(31): 7065-7072, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37527463

RESUMO

Coupled quantum electron-nuclear dynamics is often associated with the Born-Huang expansion of the molecular wave function and the appearance of nonadiabatic effects as a perturbation. On the other hand, native multicomponent representations of electrons and nuclei also exist, which do not rely on any a priori approximation. However, their implementation is hampered by prohibitive scaling. Consequently, quantum computers offer a unique opportunity for extending their use to larger systems. Here, we propose a quantum algorithm for simulating the time-evolution of molecular systems and apply it to proton transfer dynamics in malonaldehyde, described as a rigid scaffold. The proposed quantum algorithm can be easily generalized to include the explicit dynamics of the classically described molecular scaffold. We show how entanglement between electronic and nuclear degrees of freedom can persist over long times if electrons do not follow the nuclear displacement adiabatically. The proposed quantum algorithm may become a valid candidate for the study of such phenomena when sufficiently powerful quantum computers become available.

16.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014257

RESUMO

Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 chloride channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. We implement the fully polarizable forcefield AMOEBA in MD simulations of open and partially-open states of the hBest1. The AMOEBA forcefield models multipole moments up to the quadrupole; therefore, it captures induced dipole and anion-π interactions. By including polarization we demonstrate the key role that aromatic residues play in ion permeation and the functional advantages of pore asymmetry within the highly conserved hydrophobic neck of the pore. We establish that these only arise when electronic polarization is included in the molecular models. We also show that Cl⁻ permeation in this region can be achieved through hydrophobic solvation concomitant with partial ion dehydration, which is compensated for by the formation of contacts with the edge of the phenylalanine ring. Furthermore, we demonstrate how polarizable simulations can help determine the identity of ion-like densities within high-resolution cryo-EM structures. Crucially, neglecting polarization in simulation of these systems results in the localization of Cl⁻ at positions that do not correspond with their experimentally resolved location. Overall, our results demonstrate the importance of including electronic polarization in realistic and physically accurate models of biological systems.

17.
J Chem Theory Comput ; 19(24): 9269-9277, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081802

RESUMO

Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.

18.
Sci Adv ; 9(25): eadg7865, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343087

RESUMO

Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.


Assuntos
Anticorpos Antivirais , COVID-19 , Humanos , Anticorpos Antivirais/química , SARS-CoV-2/metabolismo , Ligação Proteica , Sequência de Aminoácidos
19.
J Biol Chem ; 286(28): 25016-26, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592960

RESUMO

Human chorionic gonadotropin (hCG) is an important biomarker in pregnancy and oncology, where it is routinely detected and quantified by specific immunoassays. Intelligent epitope selection is essential to achieving the required assay performance. We present binding affinity measurements demonstrating that a typical ß3-loop-specific monoclonal antibody (8G5) is highly selective in competitive immunoassays and distinguishes between hCGß(66-80) and the closely related luteinizing hormone (LH) fragment LHß(86-100), which differ only by a single amino acid residue. A combination of optical spectroscopic measurements and atomistic computer simulations on these free peptides reveals differences in turn type stabilized by specific hydrogen bonding motifs. We propose that these structural differences are the basis for the observed selectivity in the full protein.


Assuntos
Anticorpos Monoclonais Murinos/química , Gonadotropina Coriônica Humana Subunidade beta/química , Simulação por Computador , Epitopos/química , Peptídeos/química , Animais , Anticorpos Monoclonais Murinos/genética , Gonadotropina Coriônica Humana Subunidade beta/genética , Epitopos/genética , Feminino , Humanos , Imunoensaio , Camundongos , Peptídeos/genética , Gravidez , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
20.
Anal Chem ; 84(11): 5080-4, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22548504

RESUMO

Antibiotic resistance among pathogenic microorganisms is emerging as a major human healthcare concern. While there are a variety of resistance mechanisms, many can be related to single nucleotide polymorphisms and for which DNA microarrays have been widely deployed in bacterial genotyping. However, genotyping by means of allele-specific hybridization can suffer from the drawback that oligonucleotide probes with different nucleotide composition have varying thermodynamic parameters. This results in unpredictable hybridization behavior of mismatch probes. Consequently, the degree of discrimination between perfect match and mismatch probes is insufficient in some cases. We report here an on-chip enzymatic procedure to improve this discrimination in which false-positive hybrids are selectively digested. We find that the application of CEL1 Surveyor nuclease, a mismatch-specific endonuclease, significantly enhances the discrimination fidelity, as demonstrated here on a microarray for the identification of variants of carbapenem resistant Klebsiella pneumoniae carbapenemases and monitored by end point detection of fluorescence intensity. Further fundamental investigations applying total internal reflection fluorescence detection for kinetic real-time measurements confirmed the enzymatic enhancement for SNP discrimination.


Assuntos
Artefatos , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Klebsiella pneumoniae/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , beta-Lactamases/genética , Proteínas de Bactérias/química , Pareamento Incorreto de Bases , Endonucleases/metabolismo , Fluorescência , Genótipo , Klebsiella pneumoniae/genética , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/química , Polimorfismo de Nucleotídeo Único , Espectrometria de Fluorescência , Termodinâmica , Resistência beta-Lactâmica/genética , beta-Lactamases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA