RESUMO
Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.
Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Criança , Humanos , Neoplasias Encefálicas/patologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioma/patologia , Histonas/genética , Histonas/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
PURPOSE: Artificial intelligence (AI) is often trained on images without ocular co-morbidities, limiting its generalizability. This study aims to evaluate the accuracy of a convolutional neural network (CNN) applied to color fundus photos (CFPs) with simulated cataracts (SCs) in detecting diabetic retinopathy (DR). METHODS: A database of 3662 CFPs (from Asia Pacific Tele-Ophthalmology Society (APTOS) 2019) was used. Using transfer learning, a CNN was trained to classify the training images as either DR or non-DR. The CNN was then applied to classify the testing images after an SC was applied, using varying degrees of Gaussian blur. RESULTS: Accuracy without SC was 97.0%, sensitivity (Sn) 95.7%, specificity (Sp) 98.3%. For mild SC, accuracy was 93.1%, Sn 91.8%, Sp 94.3%. For moderate SC, accuracy was 62.8%, Sn 31.4%, Sp 95.2%. For severe SC, accuracy was 53.5%, Sn 11.8%, Sp 96.5%. CONCLUSION: SCs significantly impaired AI accuracy. To prepare AI for clinical use, cataracts and other real-world clinical challenges affecting image quality must be accounted for.
Assuntos
Catarata , Diabetes Mellitus , Retinopatia Diabética , Humanos , Inteligência Artificial , Retinopatia Diabética/diagnóstico , Fundo de Olho , Redes Neurais de Computação , Catarata/complicações , Catarata/diagnósticoRESUMO
PURPOSE: The objective of this study was to evaluate the relationship between research activity and National Institutes of Health (NIH) funding status of the United States (US) academic ophthalmologists. METHODS: A retrospective cross-sectional analysis of bibliometric data was conducted. The NIH Research Portfolio Online Reporting Tools Expenditures and Reports (rePORTER) website was utilized to identify ophthalmology departments in the US that received NIH funding. Affiliated faculty from these institutions were then identified using NIH rePORTER and institutional websites. H-index was calculated using the Scopus database, and the NIH iCite tool was used to determine the Relative Citation Ratio (RCR). The h-index and w-RCR quantified research productivity, while m-RCR measured research impact. RESULTS: Data on 2688 faculty members from 66 departments we re identified, of which 21% were NIH-funded. Faculty members who received NIH-funding had significantly greater research productivity and impact as measured by h-index (32.5 vs 16.6; p < .001), m-RCR (2.2 vs 1.6; p < .001), and w-RCR (147.2 vs 70.1; p < .001) than their non-funded peers. When stratified by academic rank, NIH-funded faculty still had significantly higher h-index (16.1 vs 7.9; p < .001), m-RCR (2.2 vs 1.4; p < .001), and w-RCR (63.2 vs 61.8; p < .001) than non-funded peers. A similar trend was observed among non-tenured faculty members. CONCLUSION: NIH funding is associated with higher research productivity and impact among US academic ophthalmologists as measured by h-index and RCR, which suggests that NIH funding may be a critical factor in enhancing scholarly contributions of ophthalmologists. These findings underscore the importance of continued investment in NIH funding to foster high-impact research within the field of ophthalmology.
RESUMO
Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes, the features of SVs in these different contexts have not been directly compared. We examined similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 patients from The Cancer Genome Atlas (TCGA). We found significant differences in features related to their genomic sequences and localization that suggest differences between SV-generating processes and selective pressures. For example, we found that transposon-mediated processes shape germline much more than somatic SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis. These differences were extensive enough to enable us to develop a classifier - "the great GaTSV" - that accurately distinguishes between germline and cancer SVs in tumor samples that lack a matched normal sample.
RESUMO
Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Perfilação da Expressão Gênica/métodos , Ativação Linfocitária/imunologia , Fatores de Transcrição NFATC/imunologia , Transferência Adotiva , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Chlorocebus aethiops , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Ativação Linfocitária/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Gravidez , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transplante de Pele , Baço/citologia , Baço/imunologia , Baço/metabolismo , Células VeroRESUMO
Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.
Assuntos
Fatores de Transcrição Forkhead , Neoplasias , Adulto , Carcinogênese/genética , Proliferação de Células , Criança , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Neoplasias/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Ativação TranscricionalRESUMO
We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.
Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Criança , Glioma/genética , Histonas/genética , Humanos , Mutação , Proteínas Proto-Oncogênicas/genéticaRESUMO
A 35-year-old Hispanic man presented with fever, chills, dysuria, diarrhoea, scleral icterus, tachycardia and tachypnea. He was found to be COVID-19 positive, CT of the pelvis revealed prostatic abscess, and urine culture grew Klebsiella pneumoniae Additionally, he was found to have diabetes and cirrhosis. During treatment, the patient developed vision loss, and was diagnosed with endogenous Klebsiella endophthalmitis. The patient was treated with intravenous antibiotics, pars plana vitrectomy, intravitreal antibiotics and cystoscopy/suprapubic catheter placement. On follow-up, the patient has had the suprapubic catheter removed, and successfully passed a voiding trial, but suffers permanent vision loss in both eyes.
Assuntos
COVID-19 , Diabetes Mellitus , Endoftalmite , Infecções por Klebsiella , Prostatite , Adulto , Antibacterianos/uso terapêutico , Cegueira , COVID-19/complicações , Diabetes Mellitus/virologia , Endoftalmite/complicações , Endoftalmite/diagnóstico , Endoftalmite/terapia , Humanos , Infecções por Klebsiella/complicações , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Cirrose Hepática/complicações , Cirrose Hepática/virologia , Masculino , Prostatite/complicações , Prostatite/microbiologia , SARS-CoV-2 , VitrectomiaRESUMO
The ability of the adrenocorticotropic hormone (ACTH) to induce steroidogenesis and upregulate anti-inflammatory processes has long been known. More recently, however, extrasteroidal mechanisms, through which ACTH exerts anti-inflammatory processes, have been described. This has renewed hope that ACTH can combat inflammatory conditions even when resistant to steroids. This review article summarizes the literature on the use of ACTH in ocular disease. Unfortunately, much of the data regarding the clinical utility of ACTH are outdated, with many studies published in the 1950s and 1960s. Many of these older studies are inconsistent or incomplete with their reporting, making it difficult to ascertain the meaning of the outcomes. Despite the limitations, 2 important trends are evident. First, when used to treat an inflammatory disease, ACTH can be effective at decreasing or eliminating ocular inflammation, even in a refractory disease resistant to multiple treatment modalities. Second, adverse effects of ACTH are rare and are most likely to be reported with relatively high doses of ACTH therapy. Taken as a whole, these studies offer initial promising data that ACTH may be a safe and effective alternative in refractory ocular inflammatory disease. However, they highlight an important lack of prospective data to more rigorously understand the true safety and efficacy of this therapy.