RESUMO
Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.
Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Saliva/química , Técnicas Biossensoriais/métodosRESUMO
Food allergies have become a global issue and are estimated to affect approximately 220 million people worldwide. Allergy to peanuts can easily become life-threatening and induce anaphylactic reactions. Mislabeling and cross-contamination during food processing can occur in the frame of world population growth and pose a serious health issue. As the mandatory allergen list is not uniform worldwide, the development of routine analytical strategies with high specificity and sensitivity is a demanding task to aid in the rapid identification of allergenic foods. In this work, an electrochemical aptasensor for Ara h1 peanut allergen was developed by immobilizing the specific aptamer by the inserting method. First, a layer of p-aminothiophenol (p-ATP) was immobilized on the gold surface of screen-printed electrodes (GSPE) to improve the aptamer insertion and reduce the fouling effects at the electrode surface. The grafting of the p-ATP and Ara h1 aptamer on the GSPE surface was monitored by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The resulting disposable aptasensor allowed for indirect electrochemical detection of Ara h1 protein in the presence of 5 mM ferro/ferricyanide as a redox probe. The electrochemical response upon aptamer-target interaction was monitored in the concentration range 1-250 nM, and two limits of detection in the nanomolar range were estimated based on DPV (2.78 nM Ara h1) and EIS (0.82 nM Ara h1) measurements. The aptasensor was successfully applied to real sample analysis.
Assuntos
Compostos de Anilina , Incrustação Biológica , Hipersensibilidade Alimentar , Compostos de Sulfidrila , Humanos , DNA , Oligonucleotídeos , Arachis , Ouro , Alérgenos , Trifosfato de AdenosinaRESUMO
Hepatocellular carcinoma (HCC) is the most common liver malignancy and is characterized by increasing incidence and high mortality rates. Current methods for the screening and diagnosis of HCC exhibit inherent limitations, highlighting the ever-growing need for the development of new methods for the early diagnosis of HCC. The aim of this work was to develop a novel electrochemical aptasensor for the detection of HepG2 cells, a type of circulating tumor cells that can be used as biomarkers for the early detection of HCC. A carbon screen-printed electrode was functionalized with a composite suspension containing graphene oxide, chitosan, and polyaniline nanoparticles to increase the electrode surface and provide anchoring sites for the HepG2 cell-specific aptamer. The aptamer was immobilized on the surface of the functionalized electrode using multipulse amperometry, an innovative technique that significantly reduces the time required for aptamer immobilization. The innovative platform was successfully employed for the first time for the amplification-free detection of HepG2 cells in a linear range from 10 to 200,000 cells/mL, with a limit of detection of 10 cells/mL. The platform demonstrated high selectivity and stability and was successfully used for the detection of HepG2 cells in spiked human serum samples with excellent recoveries.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Carcinoma Hepatocelular , Técnicas Eletroquímicas , Grafite , Neoplasias Hepáticas , Humanos , Células Hep G2 , Aptâmeros de Nucleotídeos/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Técnicas Eletroquímicas/métodos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangue , Grafite/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Compostos de Anilina/química , Eletrodos , Quitosana/químicaRESUMO
Recent years have shown that the diagnosis and monitoring of biomarkers involved in inflammatory-associated medical conditions such as cancer, neurological disorders, viral infections, or daily physical activities offer real benefits in increasing the quality of medical care and patient life quality. In this context, the use of integrated and portable platforms as point-of-care testing devices for biomedical analysis to enable early disease diagnosis and monitoring, which can be successfully used even at the patient's bed, is an emergency nowadays. The development of low-cost, miniaturized, and portable, user-friendly devices that provide an answer in a timely manner, such as electrochemical sensors, is relevant for the elaboration of point-of-care testing devices. This review focuses on the recent progress in bioanalysis of both specific biomarkers and inflammatory-associated biomarkers present in several diseases like neoplasia, severe neurological disorders, viral infections, and usual physical activity and provides an overview of the state of the art over the most recent electrochemical (bio)sensors for the detection of inflammation-related biomarkers. Future perspectives of point-of-care testing to improve healthcare management are also discussed.
Assuntos
Técnicas Biossensoriais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Biomarcadores/análiseRESUMO
Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1-500 µM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.
Assuntos
Grafite , Drogas Ilícitas , Metanfetamina , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Carbono , EletrodosRESUMO
Oxidative stress is linked to a series of diseases; therefore, the development of efficient antioxidants might be beneficial in preventing or ameliorating these conditions. Based on the structure of a previously reported compound with good antioxidant properties and on computational studies, we designed several catechol derivatives with enhanced antioxidant potential. The compounds were synthesized and physicochemically characterized, and their antioxidant activity was assessed through different antiradical, electron transfer and metal ions chelation assays, their electrochemical behavior and cytotoxicity were studied. The results obtained in the in vitro experiments correlated very well with the in silico studies; all final compounds presented very good antioxidant properties, generally superior to those of the reference compounds used. Similarly, the results obtained from studying the compounds' electrochemical behavior were in good agreement with the results of the antioxidant activity evaluation assays. Regarding the compounds' cytotoxicity, compound 7b had a dose-dependent inhibitory effect against all cell lines. In conclusion, through computer-aided design, we developed several catechol thiazolyl-hydrazones with excellent antioxidant properties, of which compound 7b, with two catechol moieties in its structure, exhibited the best antioxidant activity.
Assuntos
Antioxidantes , Desenho Assistido por Computador , Antioxidantes/farmacologia , Catecóis/farmacologia , Hidrazonas/farmacologia , TiazóisRESUMO
The rapid and decentralized detection of bacteria from biomedical, environmental, and food samples has the capacity to improve the conventional protocols and to change a predictable outcome. Identifying new markers and analysis methods represents an attractive strategy for the indirect but simpler and safer detection of pathogens that could replace existing methods. Enterobactin (Ent), a siderophore produced by Escherichia coli or other Gram-negative bacteria, was studied on different electrode materials to reveal its electrochemical fingerprint-very useful information towards the detection of the bacteria based on this analyte. The molecule was successfully identified in culture media samples and a future goal is the development of a rapid antibiogram. The presence of Ent was also assessed in wastewater and treated water samples collected from the municipal sewage treatment plant, groundwater, and tap water. Moreover, a custom configuration printed on a medical glove was employed to detect the target in the presence of another bacterial marker, namely pyocyanin (PyoC), that being a metabolite specific of another pathogen bacterium, namely Pseudomonas aeruginosa. Such new mobile and wearable platforms offer considerable promise for rapid low-cost on-site screening of bacterial contamination.
Assuntos
Enterobactina , Infecções por Escherichia coli , Eletrodos , Enterobactina/metabolismo , Escherichia coli/metabolismo , Humanos , Água/metabolismoRESUMO
A novel hybrid composite of conductive poly(methylene blue) (PMB) and carbon nanotubes (CNT) was prepared for the detection of 5-aminosalicylic acid (5-ASA). Electrosynthesis of PMB with glassy carbon electrode (GCE) or with carbon nanotube modified GCE was done in ethaline deep eutectic solvent of choline chloride mixed with ethylene glycol and a 10% v/v aqueous solution. Different sensor architectures were evaluated in a broad range of pH values in a Britton-Robinson (BR) buffer using electrochemical techniques, chronoamperometry (CA), and differential pulse voltammetry (DPV), to determine the optimum sensor configuration for 5-ASA sensing. Under optimal conditions, the best analytical performance was obtained with CNT/PMBDES/GCE in 0.04 M BR buffer pH 7.0 in the range 5-100 µM 5-ASA using the DPV method, with an excellent sensitivity of 9.84 µA cm-2 µM-1 (4.9 % RSD, n = 5) and a detection limit (LOD) (3σ/slope) of 7.7 nM, outclassing most similar sensors found in the literature. The sensitivity of the same sensor obtained in CA (1.33 µA cm-2 µM-1) under optimal conditions (pH 7.0, Eapp = +0.40 V) was lower than that obtained by DPV. Simultaneous detection of 5-ASA and its analogue, acetaminophen (APAP), was successfully realized, showing a catalytic effect towards the electro-oxidation of both analytes, lowering their oxidation overpotential, and enhancing the oxidation peak currents and peak-to-peak separation as compared with the unmodified electrode. The proposed method is simple, sensitive, easy to apply, and economical for routine analysis.
RESUMO
Food safety and quality control pose serious issues to food industry and public health domains, in general, with direct effects on consumers. Any physical, chemical, or biological unexpected or unidentified food constituent may exhibit harmful effects on people and animals from mild to severe reactions. According to the World Health Organization (WHO), unsafe foodstuffs are especially dangerous for infants, young children, elderly, and chronic patients. It is imperative to continuously develop new technologies to detect foodborne pathogens and contaminants in order to aid the strengthening of healthcare and economic systems. In recent years, peptide-based sensors gained much attention in the field of food research as an alternative to immuno-, apta-, or DNA-based sensors. This review presents an overview of the electrochemical biosensors using peptides as molecular bio-recognition elements published mainly in the last decade, highlighting their possible application for rapid, non-destructive, and in situ analysis of food samples. Comparison with peptide-based optical and piezoelectrical sensors in terms of analytical performance is presented. Methods of foodstuffs pretreatment are also discussed.
Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Inocuidade dos Alimentos , Animais , DNA , Impedância Elétrica , Escherichia coli/metabolismo , Humanos , Listeria monocytogenes/efeitos dos fármacos , Microfluídica , Conformação Molecular , Oxirredução , Peptídeos/química , Potenciometria , Controle de QualidadeRESUMO
The detection of folic acid in biological samples or pharmaceutical products is of great importance due to its implications in the biological functions of the human body, along with the development and growth of the fetus. The deficiency of folic acid can be reversed by the intake of different pharmaceutical formulations or alimentary products fortified with this molecule. The elaboration of sensing platforms represents a continuous work in progress, a task in which the use of conductive polymers modified with different functionalities represents one of the outcoming strategies. The possibility of manipulating their morphology with the use of templates or surfactants represents another advantage. A sensing platform based on carboxylic functionalized polypyrrole was synthesized via the electrochemical approach in the presence of a polymeric surfactant on a graphite-based surface. The sensor was able to detect the folic acid from 2.5 µM to 200 µM with a calculated limited of detection of 0.8 µM. It was employed for the detection of the analyte from commercial human serum and pharmaceutical products with excellent recovery rates. The results were double checked using an optimized spectrophotometric procedure that confirmed furthermore the performances of the sensor related to real samples assessment.
RESUMO
Surface plasmon resonance technique is highly sensitive to various processes taking place on a metal film and it has emerged as a powerful label-free method to study molecular binding processes taking place on a surface. Another important but less explored area of applications is the use of hybrid methods which combine electrochemistry with optical methods for better monitoring and understanding of biochemical processes. A detection method based on surface plasmon resonance was developed for ampicillin, applying electrochemical techniques for the elaboration and characterization of the aptasensing platform used in this study. Ampicillin is a broad-spectrum ß-lactam antibiotic, used both in human and veterinary medicine for the treatment and prevention of primary respiratory, gastrointestinal, urogenital, and skin bacterial infections. It is widely used because of its broad spectrum and low cost. This widespread use can result in the presence of residues in the environment and in food leading to health problems for individuals who are hypersensitive to penicillins. The gold chip was functionalized through potential-assisted immobilization, using multipulse amperometry, first with a thiol-terminated aptamer, as a specific ligand and secondly, using the same procedure, with mercaptohexanol, used to cover the unoccupied binding sites on the gold surface in order to prevent the nonspecific adsorption of ampicillin molecules. After establishing the optimal conditions for the chip functionalization, different concentrations of ampicillin were detected in real time, in the range of 2.5-1000 µmol L-1, with a limit of detection of 1 µmol L-1, monitoring the surface plasmon resonance response. The selectivity of the aptasensor was proven in the presence of other antibiotics and drugs, and the method was successfully applied for the detection of ampicillin from river water. Graphical abstract á .
Assuntos
Ampicilina/análise , Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Ressonância de Plasmônio de Superfície/métodos , Poluentes Químicos da Água/análise , Técnicas Eletroquímicas/métodos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Rios/químicaRESUMO
The rapid detection of bacterial strains has become a major topic thoroughly discussed across the biomedical field. Paired with the existence of nosocomial pathogen agents that imply extreme medical and financial challenges throughout diagnosis and treatment, the development of rapid and easy-to-use sensing devices has gained an increased amount of attention. Moreover, antibiotic resistance considered by World Health Organization as one of the "biggest threats to global health, food security, and development today" enables this topic as high priority. Pseudomonas aeruginosa, one of the most ubiquitous bacterial strains, has various quorum-sensing systems that are a direct cause of their virulence. One of them is represented by pyocyanin, a blue pigment with electroactive properties that is synthesized from early stages of bacterial colonization. Thus, the sensitive detection of this biomarker could enable a personalized and efficient therapy. It was achieved with the development of an electrochemical sensor based on a thermosensitive polymer, modified with Au/Ag nanoalloy for the rapid and accurate detection of pyocyanin, a virulence biomarker of Pseudomonas aeruginosa. The sensor displayed a linear range from 0.12 to 25 µM, and a limit of detection of 0.04 µM (signal/noise = 3). It was successfully tested in real samples spiked with the target analyte without any pretreatment other than a dilution step. The detection of pyocyanin with high recovery in whole blood in a time frame of 5-10 min from the moment of collection was performed with this electrochemical sensor. Graphical abstract.
Assuntos
Ligas/química , Ouro/química , Hidrogéis/química , Nanopartículas Metálicas/química , Piocianina/análise , Prata/química , Ágar/química , Artefatos , Biomarcadores/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Pseudomonas aeruginosa/isolamento & purificação , Piocianina/sangue , Reprodutibilidade dos Testes , TemperaturaRESUMO
Arsenic, one of the most abundant mineral and also one to the most toxic compounds. Due to its high toxicity sensitive analytical methods are highly important, taking into account that the admitted level is in the range of µg L-1. A novel and easy to use platform for As(III) detection from water samples is proposed, based on gold and platinum bi metallic nanoparticles and a conductive polymer (polyaniline). The electrochemical detection was achieved after optimization of cathodic pre-concentration and stripping parameters by square wave anodic stripping voltammetry at modified screen-printed carbon-based electrochemical cells, proving its applicability for disposable and cost-effective in situ analysis of arsenic.
RESUMO
Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010-2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.
Assuntos
Técnicas Biossensoriais/tendências , Técnicas Eletroquímicas/tendências , Nanoestruturas/química , Neurotransmissores/isolamento & purificação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/fisiopatologia , Neurotransmissores/químicaRESUMO
Early screening of clinically relevant pathogens in the environment is a highly desirable goal in clinical care, providing precious information that will improve patient-care outcomes. In this work, a glove-based electrochemical sensor has been designed for point-of-use screening of Pseudomonas aeruginosa's virulence factors. The methodology used for the elaboration of the fabric platform relied on printing the conductive inks on the index and middle fingers of the glove, with the goal of screening pyocyanin and pyoverdine targets. The analytical signatures of the analytes were recorded in about 4 min, via the rapid and selective square-wave-voltammetry technique. Finger-based sensors display good performance and discrimination between the targets and potential interferences, along with good reproducibility. The sensors featured linearity over the 0.01-0.1 µM range for pyocyanin and 5-50 µM range for pyoverdine, with sensitivities of 2.51 µA/µM for pyocyanin and 1.09 nA/µM for pyoverdine ( R2 = 0.990 and 0.995, respectively) and detection limits of 3.33 nM for pyocyanin and 1.66 µM for pyoverdine. Moreover, the sensors were tested in binary mixtures of analytes, with successful outcomes. In order to gain information from the surrounding environment, the active electronic areas of the printed fingers were coated with a conductive hydrogel matrix, and relevant target surfaces were "swiped for notification" of contaminants. The simple fabrication, low-cost, and reusability of the proposed glove are likely to underpin the progressive drive of wearable sensors toward decentralized environmental and healthcare applications.
Assuntos
Técnicas Eletroquímicas , Oligopeptídeos/análise , Impressão , Pseudomonas aeruginosa/química , Piocianina/análise , Fatores de Virulência/análise , Técnicas Eletroquímicas/instrumentação , Elétrons , Humanos , Impressão/instrumentação , SoluçõesRESUMO
In this work, we propose an electrochemical DNA aptasensor for the detection of profenofos, an organophosphorus pesticide, based on a competitive format and disposable graphite screen-printed electrodes (GSPEs). A thiol-tethered DNA capture probe, which results to be complementary to the chosen aptamer sequence, was immobilised on gold nanoparticles/polyaniline composite film-modified electrodes (AuNPs/PANI/GSPE). Different profenofos solutions containing a fixed amount of the biotinylated DNA aptamer were dropped onto the realized aptasensors. The hybridisation reaction was measured using a streptavidin-alkaline phosphatase enzyme conjugate, which catalyses the hydrolysis of 1-naphthyl -phosphate. The 1-naphtol enzymatic product was detected by means of differential pulse voltammetry (DPV). The aptasensor showed itself to work as a signal off sensor, according to the competitive format used. A dose response curve was obtained between 0.10 μM and 10 μM with a detection limit of 0.27 μM.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , DNA , Organotiofosfatos/análise , Praguicidas/análise , Aptâmeros de Nucleotídeos/química , DNA/química , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Nanopartículas Metálicas/químicaRESUMO
Advances in nanoscience have allowed scientists to incorporate new nanomaterials in biosensing platforms. Carbon nanotubes are nanomaterials that facilitate the charge transfer between the bioelement and the transducer. Electrochemical impedance spectroscopy is a useful technique for the modified surface characterization. In the present approach electrochemical impedance spectroscopy was used to characterize the electrodes modified with different types of carbon nanotubes (single and multi-wall) according to their morphology and electrochemical behavior. By using Nyquist and Bode diagrams it was possible to assign the appropriate circuit considering all possible contributors. The charge transfer resistances as well as the time constants were calculated for all five types of investigated carbon nanotubes.
Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Nanocompostos/química , Nanotubos de Carbono/química , Polímeros/química , Eletrodos , Vidro , Teste de MateriaisRESUMO
(1) Background: Carboplatin (CBP) is a chemotherapeutic drug widely used in the treatment of a variety of cancers. Despite its efficiency, CBP is associated with side effects that greatly limit its clinical use. To mitigate these effects, CBP can be encapsulated in targeted delivery systems, such as liposomes. Ensuring the adequate loading and release of CBP from these carriers requires strict control in pharmaceutical formulation development, demanding modern, rapid, and robust analytical methods. The aim of this study was the development of a sensor for the fast and accurate quantification of CBP and its application on proof-of-concept CBP-loaded nanosomes. (2) Methods: Screen-printed electrodes were obtained in-lab and the electrochemical behavior of CBP was tested on the obtained electrodes. (3) Results: The in-lab screen-printed electrodes demonstrated superior properties compared to commercial ones. The novel sensors demonstrated accurate detection of CBP on a dynamic range from 5 to 500 µg/mL (13.5-1350 µM). The method was successfully applied on CBP loaded and released from nanosomes, with strong correlations with a spectrophotometric method used as control. (4) Conclusions: This study demonstrates the viability of electrochemical techniques as alternative options during the initial phases of pharmaceutical formulation development.
RESUMO
Kynurenic acid (KA) is an active metabolite of tryptophan with notable biological effects, such as antioxidant, neuroprotective, and anti-inflammatory properties. It often undergoes changes of the concentration in biological fluids in chronic diseases. Thus, detecting KA is of great importance for diagnosing inflammatory and neurodegenerative conditions, monitoring disease progression, and assessing responses to pharmacological treatment. This study aimed to design a tailored, flexible platform for sensitive and direct electrochemical detection of KA in biological fluids. Carbon-based electrodes were custom-printed in the lab using specialized inks and flexible substrates. The working electrodes were further functionalized with graphene oxide and subsequently electrochemically reduced to increase the sensitivity toward the analyte. An optimized differential pulse voltammetry protocol was developed for KA detection. The elaborated platform was firstly characterized and then evaluated regarding the analytical performances. It showed a good limit of detection (3 nM and demonstrated the capability to detect KA across a broad concentration range (0.01-500 µM). Finally, the elaborated flexible platform, was succesfully applied for KA determination in serum and saliva samples, in comparison with an optimized HPLC-UV method. The developed platform is the first example of in-lab printed flexible platform reported in literature so far for KA detection. It is also the first study reported in the literature of detection of KA in raw saliva collected from 10 subjects. The sensitivity towards the target analyte, coupled with the adaptability and portability, showcases the potential of this platform for thus illustrating great potential for further development of wearable sensors and biomedical applications.
Assuntos
Técnicas Eletroquímicas , Eletrodos , Ácido Cinurênico , Saliva , Dispositivos Eletrônicos Vestíveis , Ácido Cinurênico/análise , Ácido Cinurênico/sangue , Humanos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Saliva/química , Grafite/química , Limite de DetecçãoRESUMO
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.