Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(20): 9138-9148, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35546521

RESUMO

Spin-crossover (SCO) materials display many fascinating behaviors including collective phase transitions and spin-state switching controlled by external stimuli, e.g., light and electrical currents. As single-molecule switches, they have been fêted for numerous practical applications, but these remain largely unrealized-partly because of the difficulty of switching these materials at high temperatures. We introduce a semiempirical microscopic model of SCO materials combining crystal field theory with elastic intermolecular interactions. For realistic parameters, this model reproduces the key experimental results including thermally induced phase transitions, light-induced spin-state trapping (LIESST), and reverse-LIESST. Notably, we reproduce and explain the experimentally observed relationship between the critical temperature of the thermal transition, T1/2, and the highest temperature for which the trapped state is stable, TLIESST, and explain why increasing the stiffness of the coordination sphere increases TLIESST. We propose strategies to design SCO materials with higher TLIESST: optimizing the spin-orbit coupling via heavier atoms (particularly in the inner coordination sphere) and minimizing the enthalpy difference between the high-spin (HS) and low-spin (LS) states. However, the most dramatic increases arise from increasing the cooperativity of the spin-state transition by increasing the rigidity of the crystal. Increased crystal rigidity can also stabilize the HS state to low temperatures on thermal cycling yet leave the LS state stable at high temperatures following, for example, reverse-LIESST. We show that such highly cooperative systems offer a realistic route to robust room-temperature switching, demonstrate this in silico, and discuss material design rationale to realize this.

2.
Inorg Chem ; 61(30): 11667-11674, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35862437

RESUMO

A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.

3.
Inorg Chem ; 61(17): 6641-6649, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35442030

RESUMO

We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.

4.
J Am Chem Soc ; 141(50): 19790-19799, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31714072

RESUMO

Molecules with bistable spin states are widely studied because of their importance to the natural world and their potential applications as molecular scale switches. In molecular crystals and framework materials, elastic interactions between molecules lead to collective phenomena including hysteresis, multistep transitions, and antiferroelastic order of spin states. Elastic frustration, the inability to simultaneously minimize competing elastic interactions, plays a key role in many of the most important phenomena in spin crossover materials. Here we use an elastic model to predict that a new phase of matter occurs for bistable molecules on the kagome lattice, which is intrinsically frustrated as it is composed of equilateral triangles. In this phase, which we call "spin-state ice" in analogy to water and spin ices, there is no long-range order of spin-states; instead they follow a local "ice rule" that each triangle must contain two metal centers in one spin state and one in the other. We show that spin-state ice supports mobile collective excitations that carry a spin midway between the two spin states of a single metal center but no electrical charge. We show that there are distinctive signatures of spin-state ice in neutron scattering, electron paramagnetic resonance, and thermodynamic experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA