Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(17): 2887-2898, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394011

RESUMO

Depression is one of the most common mental health disorders and one of the top causes of disability throughout the world. The present study sought to identify putative causal associations between depression and hundreds of complex human traits through a genome-wide screening of genetic data and a hypothesis-free approach. We leveraged genome-wide association studies summary statistics for depression and 1504 complex traits and investigated potential causal relationships using the latent causal variable method. We identified 559 traits genetically correlated with depression risk at FDR < 5%. Of these, 46 were putative causal genetic determinants of depression, including lifestyle factors, diseases of the nervous system, respiratory disorders, diseases of the musculoskeletal system, traits related to the health of the gastrointestinal system, obesity, vitamin D levels and the use of prescription medications, among others. No phenotypes were identified as potential outcomes of depression. Our results suggest that genetic liability to multiple complex traits may contribute to a higher risk for depression. In particular, we show a putative causal genetic effect of pain, obesity and inflammation on depression. These findings provide novel insights into the potential causal determinants of depression and should be interpreted as testable hypotheses for future studies to confirm, which may facilitate the design of new prevention strategies to reduce depression's burden.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Depressão/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Obesidade/genética , Fenômica , Polimorfismo de Nucleotídeo Único/genética
2.
Brain ; 146(6): 2464-2475, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346149

RESUMO

Understanding how variations in the plasma and brain proteome contribute to multiple sclerosis susceptibility can provide important insights to guide drug repurposing and therapeutic development for the disease. However, the role of genetically predicted protein abundance in multiple sclerosis remains largely unknown. Integrating plasma proteomics (n = 3301) and brain proteomics (n = 376 discovery; n = 152 replication) into multiple sclerosis genome-wide association studies (n = 14 802 cases and 26 703 controls), we employed summary-based methods to identify candidate proteins involved in multiple sclerosis susceptibility. Next, we evaluated associations of the corresponding genes with multiple sclerosis at tissue-level using large gene expression quantitative trait data from whole-blood (n = 31 684) and brain (n = 1194) tissue. Further, to assess transcriptional profiles for candidate proteins at cell-level, we examined gene expression patterns in immune cell types (Dataset 1: n = 73 cases and 97 controls; Dataset 2: n = 31 cases and 31 controls) for identified plasma proteins, and in brain cell types (Dataset 1: n = 4 cases and 5 controls; Dataset 2: n = 5 cases and 3 controls) for identified brain proteins. In a longitudinal multiple sclerosis cohort (n = 203 cases followed up to 15 years), we also assessed the corresponding gene-level associations with the outcome of disability worsening. We identified 39 novel proteins associated with multiple sclerosis risk. Based on five identified plasma proteins, four available corresponding gene candidates showed consistent associations with multiple sclerosis risk in whole-blood, and we found TAPBPL upregulation in multiple sclerosis B cells, CD8+ T cells and natural killer cells compared with controls. Among the 34 candidate brain proteins, 18 were replicated in a smaller cohort and 14 of 21 available corresponding gene candidates also showed consistent associations with multiple sclerosis risk in brain tissue. In cell-specific analysis, six identified brain candidates showed consistent differential gene expression in neuron and oligodendrocyte cell clusters. Based on the 39 protein-coding genes, we found 23 genes that were associated with disability worsening in multiple sclerosis cases. The findings present a set of candidate protein biomarkers for multiple sclerosis, reinforced by high concordance in downstream transcriptomics findings at tissue-level. This study also highlights the heterogeneity of cell-specific transcriptional profiles for the identified proteins and that numerous candidates were also implicated in disease progression. Together, these findings can serve as an important anchor for future studies of disease mechanisms and therapeutic development.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Estudo de Associação Genômica Ampla , Biomarcadores , Proteínas Sanguíneas/genética , Encéfalo , Imunoglobulinas/genética , Proteínas de Membrana/genética
3.
Nucleic Acids Res ; 50(15): e87, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35716123

RESUMO

Genome wide association studies provide statistical measures of gene-trait associations that reveal how genetic variation influences phenotypes. This study develops an unsupervised dimensionality reduction method called UnTANGLeD (Unsupervised Trait Analysis of Networks from Gene Level Data) which organizes 16,849 genes into discrete gene programs by measuring the statistical association between genetic variants and 1,393 diverse complex traits. UnTANGLeD reveals 173 gene clusters enriched for protein-protein interactions and highly distinct biological processes governing development, signalling, disease, and homeostasis. We identify diverse gene networks with robust interactions but not associated with known biological processes. Analysis of independent disease traits shows that UnTANGLeD gene clusters are conserved across all complex traits, providing a simple and powerful framework to predict novel gene candidates and programs influencing orthogonal disease phenotypes. Collectively, this study demonstrates that gene programs co-ordinately orchestrating cell functions can be identified without reliance on prior knowledge, providing a method for use in functional annotation, hypothesis generation, machine learning and prediction algorithms, and the interpretation of diverse genomic data.


Assuntos
Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Circulation ; 146(16): 1225-1242, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36154123

RESUMO

BACKGROUND: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS: We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS: In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.


Assuntos
Trombose , Tromboembolia Venosa , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Trombose/genética , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/genética
5.
Brain ; 145(9): 3214-3224, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35735024

RESUMO

Migraine is a highly common and debilitating disorder that often affects individuals in their most productive years of life. Previous studies have identified both genetic variants and brain morphometry differences associated with migraine risk. However, the relationship between migraine and brain morphometry has not been examined on a genetic level, and the causal nature of the association between brain structure and migraine risk has not been determined. Using the largest available genome-wide association studies to date, we examined the genome-wide genetic overlap between migraine and intracranial volume, as well as the regional volumes of nine subcortical brain structures. We further focused the identification and biological annotation of genetic overlap between migraine and each brain structure on specific regions of the genome shared between migraine and brain structure. Finally, we examined whether the size of any of the examined brain regions causally increased migraine risk using a Mendelian randomization approach. We observed a significant genome-wide negative genetic correlation between migraine risk and intracranial volume (rG = -0.11, P = 1 × 10-3) but not with any subcortical region. However, we identified jointly associated regional genomic overlap between migraine and every brain structure. Gene enrichment in these shared genomic regions pointed to possible links with neuronal signalling and vascular regulation. Finally, we provide evidence of a possible causal relationship between smaller total brain, hippocampal and ventral diencephalon volume and increased migraine risk, as well as a causal relationship between increased risk of migraine and a larger volume of the amygdala. We leveraged the power of large genome-wide association studies to show evidence of shared genetic pathways that jointly influence migraine risk and several brain structures, suggesting that altered brain morphometry in individuals with high migraine risk may be genetically mediated. Further interrogation of these results showed support for the neurovascular hypothesis of migraine aetiology and shed light on potentially viable therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos de Enxaqueca , Tonsila do Cerebelo , Encéfalo/diagnóstico por imagem , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Hipocampo , Humanos , Transtornos de Enxaqueca/genética
6.
Cereb Cortex ; 32(4): 796-807, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379727

RESUMO

Genome-wide association studies (GWAS) have identified genetic variants associated with brain morphology and substance use behaviors (SUB). However, the genetic overlap between brain structure and SUB has not been well characterized. We leveraged GWAS summary data of 71 brain imaging measures and alcohol, tobacco, and cannabis use to investigate their genetic overlap using linkage disequilibrium score regression. We used genomic structural equation modeling to model a "common SUB genetic factor" and investigated its genetic overlap with brain structure. Furthermore, we estimated SUB polygenic risk scores (PRS) and examined whether they predicted brain imaging traits using the Adolescent Behavior and Cognitive Development (ABCD) study. We identified 8 significant negative genetic correlations, including between (1) alcoholic drinks per week and average cortical thickness, and (2) intracranial volume with age of smoking initiation. We observed 5 positive genetic correlations, including those between (1) insula surface area and lifetime cannabis use, and (2) the common SUB genetic factor and pericalcarine surface area. SUB PRS were associated with brain structure variation in ABCD. Our findings highlight a shared genetic etiology between cortical brain morphology and SUB and suggest that genetic variants associated with SUB may be causally related to brain structure differences.


Assuntos
Cannabis , Estudo de Associação Genômica Ampla , Adolescente , Encéfalo/diagnóstico por imagem , Humanos , Herança Multifatorial , Nicotiana/genética
7.
Aust N Z J Psychiatry ; 57(3): 423-431, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35403454

RESUMO

OBJECTIVE: Each year, around one million people die by suicide. Despite its recognition as a public health concern, large-scale research on causal determinants of suicide attempt risk is scarce. Here, we leverage results from a recent genome-wide association study (GWAS) of suicide attempt to perform a data-driven screening of traits causally associated with suicide attempt. METHODS: We performed a hypothesis-generating phenome-wide screening of causal relationships between suicide attempt risk and 1520 traits, which have been systematically aggregated on the Complex-Traits Genomics Virtual Lab platform. We employed the latent causal variable (LCV) method, which uses results from GWAS to assess whether a causal relationship can explain a genetic correlation between two traits. If a trait causally influences another one, the genetic variants that increase risk for the causal trait will also increase the risk for the outcome inducing a genetic correlation. Nonetheless, a genetic correlation can also be observed when traits share common pathways. The LCV method can assess whether the pattern of genetic effects for two genetically correlated traits support a causal association rather than a shared aetiology. RESULTS: Our approach identified 62 traits that increased risk for suicide attempt. Risk factors identified can be broadly classified into (1) physical health disorders, including oesophagitis, fibromyalgia, hernia and cancer; (2) mental health-related traits, such as depression, substance use disorders and anxiety; and (3) lifestyle traits including being involved in combat or exposure to a war zone, and specific job categories such as being a truck driver or machine operator. CONCLUSIONS: Suicide attempt risk is likely explained by a combination of behavioural phenotypes and risk for both physical and psychiatric disorders. Our results also suggest that substance use behaviours and pain-related conditions are associated with an increased suicide attempt risk, elucidating important causal mechanisms that underpin this significant public health problem.


Assuntos
Estudo de Associação Genômica Ampla , Tentativa de Suicídio , Humanos , Tentativa de Suicídio/prevenção & controle , Fatores de Risco , Transtornos de Ansiedade , Genômica
8.
Eur Spine J ; 32(6): 2078-2085, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069442

RESUMO

PURPOSE: Causal mechanisms underlying systemic inflammation in spinal & widespread pain remain an intractable experimental challenge. Here we examined whether: (i) associations between blood C-reactive protein (CRP) and chronic back, neck/shoulder & widespread pain can be explained by shared underlying genetic variants; and (ii) higher CRP levels causally contribute to these conditions. METHODS: Using genome-wide association studies (GWAS) of chronic back, neck/shoulder & widespread pain (N = 6063-79,089 cases; N = 239,125 controls) and GWAS summary statistics for blood CRP (Pan-UK Biobank N = 400,094 & PAGE consortium N = 28,520), we employed cross-trait bivariate linkage disequilibrium score regression to determine genetic correlations (rG) between these chronic pain phenotypes and CRP levels (FDR < 5%). Latent causal variable (LCV) and generalised summary data-based Mendelian randomisation (GSMR) analyses examined putative causal associations between chronic pain & CRP (FDR < 5%). RESULTS: Higher CRP levels were genetically correlated with chronic back, neck/shoulder & widespread pain (rG range 0.26-0.36; P ≤ 8.07E-9; 3/6 trait pairs). Although genetic causal proportions (GCP) did not explain this finding (GCP range - 0.32-0.08; P ≥ 0.02), GSMR demonstrated putative causal effects of higher CRP levels contributing to each pain type (beta range 0.027-0.166; P ≤ 9.82E-03; 3 trait pairs) as well as neck/shoulder pain effects on CRP levels (beta [S.E.] 0.030 [0.021]; P = 6.97E-04). CONCLUSION: This genetic evidence for higher CRP levels in chronic spinal (back, neck/shoulder) & widespread pain warrants further large-scale multimodal & prospective longitudinal studies to accelerate the identification of novel translational targets and more effective therapeutic strategies.


Assuntos
Proteína C-Reativa , Dor Crônica , Humanos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Dor Crônica/genética , Estudo de Associação Genômica Ampla , Inflamação , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos
9.
PLoS Genet ; 16(10): e1009154, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104719

RESUMO

Indirect parental genetic effects may be defined as the influence of parental genotypes on offspring phenotypes over and above that which results from the transmission of genes from parents to their children. However, given the relative paucity of large-scale family-based cohorts around the world, it is difficult to demonstrate parental genetic effects on human traits, particularly at individual loci. In this manuscript, we illustrate how parental genetic effects on offspring phenotypes, including late onset conditions, can be estimated at individual loci in principle using large-scale genome-wide association study (GWAS) data, even in the absence of parental genotypes. Our strategy involves creating "virtual" mothers and fathers by estimating the genotypic dosages of parental genotypes using physically genotyped data from relative pairs. We then utilize the expected dosages of the parents, and the actual genotypes of the offspring relative pairs, to perform conditional genetic association analyses to obtain asymptotically unbiased estimates of maternal, paternal and offspring genetic effects. We apply our approach to 19066 sibling pairs from the UK Biobank and show that a polygenic score consisting of imputed parental educational attainment SNP dosages is strongly related to offspring educational attainment even after correcting for offspring genotype at the same loci. We develop a freely available web application that quantifies the power of our approach using closed form asymptotic solutions. We implement our methods in a user-friendly software package IMPISH (IMputing Parental genotypes In Siblings and Half Siblings) which allows users to quickly and efficiently impute parental genotypes across the genome in large genome-wide datasets, and then use these estimated dosages in downstream linear mixed model association analyses. We conclude that imputing parental genotypes from relative pairs may provide a useful adjunct to existing large-scale genetic studies of parents and their offspring.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Irmãos , Software , Feminino , Genótipo , Humanos , Modelos Lineares , Masculino , Pais , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
Circulation ; 144(12): 947-960, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34264749

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly affects cardiac function. METHODS: We used genetic and pharmacologic methods to investigate the role of acid-sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole-organ level. Human induced pluripotent stem cell-derived cardiomyocytes as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and postconditioning therapeutic agents. RESULTS: Analysis of human complex trait genetics indicates that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using human induced pluripotent stem cell-derived cardiomyocytes in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacologic inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction and 2 models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as preconditioning or postconditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no effect on cardiac ion channels regulating baseline electromechanical coupling and physiologic performance. CONCLUSIONS: Our data provide compelling evidence for a novel pharmacologic strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Assuntos
Canais Iônicos Sensíveis a Ácido/biossíntese , Canais Iônicos Sensíveis a Ácido/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Preparação de Coração Isolado/métodos , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Venenos de Aranha/farmacologia
11.
BMC Med ; 20(1): 34, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101027

RESUMO

BACKGROUND: Greater maternal adiposity before or during pregnancy is associated with greater offspring adiposity throughout childhood, but the extent to which this is due to causal intrauterine or periconceptional mechanisms remains unclear. Here, we use Mendelian randomisation (MR) with polygenic risk scores (PRS) to investigate whether associations between maternal pre-/early pregnancy body mass index (BMI) and offspring adiposity from birth to adolescence are causal. METHODS: We undertook confounder adjusted multivariable (MV) regression and MR using mother-offspring pairs from two UK cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) and Born in Bradford (BiB). In ALSPAC and BiB, the outcomes were birthweight (BW; N = 9339) and BMI at age 1 and 4 years (N = 8659 to 7575). In ALSPAC only we investigated BMI at 10 and 15 years (N = 4476 to 4112) and dual-energy X-ray absorptiometry (DXA) determined fat mass index (FMI) from age 10-18 years (N = 2659 to 3855). We compared MR results from several PRS, calculated from maternal non-transmitted alleles at between 29 and 80,939 single nucleotide polymorphisms (SNPs). RESULTS: MV and MR consistently showed a positive association between maternal BMI and BW, supporting a moderate causal effect. For adiposity at most older ages, although MV estimates indicated a strong positive association, MR estimates did not support a causal effect. For the PRS with few SNPs, MR estimates were statistically consistent with the null, but had wide confidence intervals so were often also statistically consistent with the MV estimates. In contrast, the largest PRS yielded MR estimates with narrower confidence intervals, providing strong evidence that the true causal effect on adolescent adiposity is smaller than the MV estimates (Pdifference = 0.001 for 15-year BMI). This suggests that the MV estimates are affected by residual confounding, therefore do not provide an accurate indication of the causal effect size. CONCLUSIONS: Our results suggest that higher maternal pre-/early-pregnancy BMI is not a key driver of higher adiposity in the next generation. Thus, they support interventions that target the whole population for reducing overweight and obesity, rather than a specific focus on women of reproductive age.


Assuntos
Adiposidade/genética , Obesidade/genética , Adolescente , Alelos , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Estudos Longitudinais , Obesidade/etiologia , Gravidez , Fatores de Risco , Reino Unido
12.
Brain ; 144(12): 3611-3622, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34907416

RESUMO

Structural neuroimaging studies of individuals with chronic pain conditions have often observed decreased regional grey matter at a phenotypic level. However, it is not known if this association can be attributed to genetic factors. Here we employed a novel integrative data-driven and hypothesis-testing approach to determine whether there is a genetic basis to grey matter morphology differences in chronic pain. Using publicly available genome-wide association study summary statistics for regional chronic pain conditions (n = 196 963) and structural neuroimaging measures (n = 19 629-34 000), we applied bivariate linkage disequilibrium-score regression and latent causal variable analyses to determine the genetic correlations (rG) and genetic causal proportion (GCP) between these complex traits, respectively. Five a priori brain regions (i.e. prefrontal cortex, cingulate cortex, insula, thalamus and superior temporal gyrus) were selected based on systematic reviews of grey matter morphology studies in chronic pain. Across this evidence-based selection of five brain regions, 10 significant negative genetic correlations (out of 369) were found (false discovery rate < 5%), suggesting a shared genetic basis to both reduced regional grey matter morphology and the presence of chronic pain. Specifically, negative genetic correlations were observed between reduced insula grey matter morphology and chronic pain in the abdomen (mean insula cortical thickness), hips (left insula volume) and neck/shoulders (left and right insula volume). Similarly, a shared genetic basis was found for reduced posterior cingulate cortex volume in chronic pain of the hip (left and right posterior cingulate), neck/shoulder (left posterior cingulate) and chronic pain at any site (left posterior cingulate); and for reduced pars triangularis volume in chronic neck/shoulder (left pars triangularis) and widespread pain (right pars triangularis). Across these negative genetic correlations, a significant genetic causal proportion was only found between mean insula thickness and chronic abdominal pain [rG (standard error, SE) = -0.25 (0.08), P = 1.06 × 10-3; GCP (SE) = -0.69 (0.20), P = 4.96 × 10-4]. This finding suggests that the genes underlying reduced cortical thickness of the insula causally contribute to an increased risk of chronic abdominal pain. Altogether, these results provide independent corroborating evidence for observational reports of decreased grey matter of particular brain regions in chronic pain. Further, we show for the first time that this association is mediated (in part) by genetic factors. These novel findings warrant further investigation into the neurogenetic pathways that underlie the development and prolongation of chronic pain conditions.


Assuntos
Encéfalo/patologia , Dor Crônica/genética , Dor Crônica/patologia , Substância Cinzenta/patologia , Encéfalo/diagnóstico por imagem , Estudo de Associação Genômica Ampla , Genótipo , Substância Cinzenta/diagnóstico por imagem , Humanos , Neuroimagem/métodos , Polimorfismo de Nucleotídeo Único
13.
Hum Genet ; 140(8): 1253-1265, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34057592

RESUMO

OBJECTIVE: In the present study, we sought to identify causal relationships between obesity and other complex traits and conditions using a data-driven hypothesis-free approach that uses genetic data to infer causal associations. METHODS: We leveraged available summary-based genetic data from genome-wide association studies on 1498 phenotypes and applied the latent causal variable method (LCV) between obesity and all traits. RESULTS: We identified 110 traits causally associated with obesity. Of those, 109 were causal outcomes of obesity, while only leg pain in calves was a causal determinant of obesity. Causal outcomes of obesity included 26 phenotypes associated with cardiovascular diseases, 22 anthropometric measurements, nine with the musculoskeletal system, nine with behavioural or lifestyle factors including loneliness or isolation, six with respiratory diseases, five with body bioelectric impedances, four with psychiatric phenotypes, four related to the nervous system, four with disabilities or long-standing illness, three with the gastrointestinal system, three with use of analgesics, two with metabolic diseases, one with inflammatory response and one with the neurodevelopmental disorder ADHD, among others. In particular, some causal outcomes of obesity included hypertension, stroke, ever having a period of extreme irritability, low forced vital capacity and forced expiratory volume, diseases of the musculoskeletal system, diabetes, carpal tunnel syndrome, loneliness or isolation, high leukocyte count, and ADHD. CONCLUSIONS: Our results indicate that obesity causally affects a wide range of traits and comorbid diseases, thus providing an overview of the metabolic, physiological, and neuropsychiatric impact of obesity on human health.


Assuntos
Doenças Cardiovasculares/genética , Gastroenteropatias/genética , Pneumopatias/genética , Transtornos Mentais/genética , Doenças Metabólicas/genética , Doenças Musculoesqueléticas/genética , Obesidade/genética , Índice de Massa Corporal , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Feminino , Gastroenteropatias/complicações , Gastroenteropatias/patologia , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Solidão/psicologia , Pneumopatias/complicações , Pneumopatias/patologia , Masculino , Transtornos Mentais/complicações , Transtornos Mentais/patologia , Doenças Metabólicas/complicações , Doenças Metabólicas/patologia , Herança Multifatorial , Doenças Musculoesqueléticas/complicações , Doenças Musculoesqueléticas/patologia , Obesidade/complicações , Obesidade/patologia , Fenótipo
14.
Mult Scler ; 27(14): 2141-2149, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33870794

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have succeeded in identifying over 200 susceptibility loci for multiple sclerosis (MS). However, the potential functional variants and the mechanisms by which these loci affect MS risk remain largely unexplained. OBJECTIVES: We used summary data-based Mendelian randomisation to prioritise risk genes and infer potential biological mechanisms for MS risk loci. METHODS: The data used consisted of DNA methylation (n = 1980) QTL (mQTL) and gene expression (n = 31,684) QTL (eQTL) derived from whole blood as well as MS GWAS summary statistics (14,802 cases, 26,703 controls). The findings were further evaluated using data derived from independent brain mQTL (n = 1160) and eQTL (n = 1194). RESULTS: In whole blood, we identified two independent genomic loci (lincRNA: RP11-326C3.13 and TNFSF14) with consistent genome-wide significant pleiotropic associations across different omics layers. In brain tissue, a similar effect for the RP11-326C3.13 locus was observed but not for TNFSF14, indicating a potential tissue-specific effect for the TNFSF14 locus. CONCLUSION: We provide in silico evidence for the putative biological mechanisms by which the identified DNA methylation sites and target genes are functionally relevant to MS development in different tissues. Future research targeting these genes and DNA methylation sites will determine their roles in the pathophysiology of MS.


Assuntos
Estudo de Associação Genômica Ampla , Esclerose Múltipla , Metilação de DNA , Loci Gênicos , Predisposição Genética para Doença , Humanos , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
15.
Nature ; 520(7546): 224-9, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25607358

RESUMO

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.


Assuntos
Encéfalo/anatomia & histologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Apoptose/genética , Núcleo Caudado/anatomia & histologia , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Loci Gênicos/genética , Hipocampo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Tamanho do Órgão/genética , Putamen/anatomia & histologia , Caracteres Sexuais , Crânio/anatomia & histologia , Adulto Jovem
16.
Twin Res Hum Genet ; 24(3): 145-154, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34340725

RESUMO

Pneumonia is a respiratory condition with complex etiology. Host genetic variation is thought to contribute to individual differences in susceptibility and symptom manifestation. Here, we analyze pneumonia data from the UK Biobank (14,780 cases and 439,096 controls) and FinnGen (9980 cases and 86,519 controls) and perform a genomewide association study meta-analysis. We use gene-based tests, colocalization, genetic correlation, latent causal variable (LCV) and polygenic prediction in an independent Australian sample (N = 5595) to draw insights into the etiology of pneumonia risk. We identify two independent loci on chromosome 15 (lead single-nucleotide polymorphisms rs2009746 and rs76474922) to be associated with pneumonia (p < 5e-8). Gene-based tests revealed 18 genes in chromosomes 15, 16 and 9, including IL127, PBX3, ApoB receptor (APOBR) and smoking related genes CHRNA3/5, statistically associated with pneumonia. We observed genetic correlations between pneumonia and cardiorespiratory, psychiatric and inflammatory related traits. LCV analysis suggests a strong genetic causal relationship with cardiovascular health phenotypes. Polygenic risk scores for pneumonia significantly predicted self-reported pneumonia in an independent sample, albeit with a small effect size (OR = 1.11 95% CI [1.04, 1.19], p < .05). Sensitivity analyses suggested the associations in chromosome 15 are mediated by smoking history, but the associations in chromosomes 16 and 9, and polygenic prediction were robust to adjustment for smoking. Altogether, our results highlight common genetic variants, genes and potential pathways that contribute to individual differences in susceptibility to pneumonia, and advance our understanding of the genetic factors underlying heterogeneity in respiratory medical outcomes.


Assuntos
Estudo de Associação Genômica Ampla , Pneumonia , Austrália , Bancos de Espécimes Biológicos , Predisposição Genética para Doença , Humanos , Pneumonia/epidemiologia , Pneumonia/genética , Reino Unido
17.
Twin Res Hum Genet ; 24(1): 1-6, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33663638

RESUMO

Several neuroimaging studies have reported associations between brain white matter microstructure and chronotype. However, it is unclear whether those phenotypic relationships are causal or underlined by genetic factors. In the present study, we use genetic data to examine the genetic overlap and infer causal relationships between chronotype and diffusion tensor imaging (DTI) measures. We identify 29 significant pairwise genetic correlations, of which 13 also show evidence for a causal association. Genetic correlations were identified between chronotype and brain-wide mean, axial and radial diffusivities. When exploring individual tracts, 10 genetic correlations were observed with mean diffusivity, 10 with axial diffusivity, 4 with radial diffusivity and 2 with mode of anisotropy. We found evidence for a possible causal association of eveningness with white matter microstructure measures in individual tracts including the posterior limb and the retrolenticular part of the internal capsule; the genu and splenium of the corpus callosum and the posterior, superior and anterior regions of the corona radiata. Our findings contribute to the understanding of how genes influence circadian preference and brain white matter and provide a new avenue for investigating the role of chronotype in health and disease.


Assuntos
Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Neuroimagem , Substância Branca/diagnóstico por imagem
18.
J Headache Pain ; 22(1): 66, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238214

RESUMO

BACKGROUND: Migraine is a complex neurological disorder that is considered the most common disabling brain disorder affecting 14 % of people worldwide. The present study sought to infer potential causal relationships between self-reported migraine and other complex traits, using genetic data and a hypothesis-free approach. METHODS: We leveraged available summary statistics from genome-wide association studies (GWAS) of 1,504 phenotypes and self-reported migraine and inferred pair-wise causal relationships using the latent causal variable (LCV) method. RESULTS: We identify 18 potential causal relationships between self-reported migraine and other complex traits. Hypertension and blood clot formations were causally associated with an increased migraine risk, possibly through vasoconstriction and platelet clumping. We observed that sources of abdominal pain and discomfort might influence a higher risk for migraine. Moreover, occupational and environmental factors such as working with paints, thinner or glues, and being exposed to diesel exhaust were causally associated with higher migraine risk. Psychiatric-related phenotypes, including stressful life events, increased migraine risk. In contrast, ever feeling unenthusiastic / disinterested for a whole week, a phenotype related to the psychological well-being of individuals, was a potential outcome of migraine. CONCLUSIONS: Overall, our results suggest a potential vascular component to migraine, highlighting the role of vasoconstriction and platelet clumping. Stressful life events and occupational variables potentially influence a higher migraine risk. Additionally, a migraine could impact the psychological well-being of individuals. Our findings provide novel testable hypotheses for future studies that may inform the design of new interventions to prevent or reduce migraine risk and recurrence.


Assuntos
Transtornos de Enxaqueca , Herança Multifatorial , Estudo de Associação Genômica Ampla , Humanos , Transtornos de Enxaqueca/epidemiologia , Transtornos de Enxaqueca/genética , Fenótipo , Autorrelato
19.
Neuroimage ; 212: 116691, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126298

RESUMO

It is well established that higher cognitive ability is associated with larger brain size. However, individual variation in intelligence exists despite brain size and recent studies have shown that a simple unifactorial view of the neurobiology underpinning cognitive ability is probably unrealistic. Educational attainment (EA) is often used as a proxy for cognitive ability since it is easily measured, resulting in large sample sizes and, consequently, sufficient statistical power to detect small associations. This study investigates the association between three global (total surface area (TSA), intra-cranial volume (ICV) and average cortical thickness) and 34 regional cortical measures with educational attainment using a polygenic scoring (PGS) approach. Analyses were conducted on two independent target samples of young twin adults with neuroimaging data, from Australia (N â€‹= â€‹1097) and the USA (N â€‹= â€‹723), and found that higher EA-PGS were significantly associated with larger global brain size measures, ICV and TSA (R2 â€‹= â€‹0.006 and 0.016 respectively, p â€‹< â€‹0.001) but not average thickness. At the regional level, we identified seven cortical regions-in the frontal and temporal lobes-that showed variation in surface area and average cortical thickness over-and-above the global effect. These regions have been robustly implicated in language, memory, visual recognition and cognitive processing. Additionally, we demonstrate that these identified brain regions partly mediate the association between EA-PGS and cognitive test performance. Altogether, these findings advance our understanding of the neurobiology that underpins educational attainment and cognitive ability, providing focus points for future research.


Assuntos
Córtex Cerebral/anatomia & histologia , Escolaridade , Sucesso Acadêmico , Adolescente , Adulto , Feminino , Humanos , Inteligência/fisiologia , Idioma , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Herança Multifatorial , Tamanho do Órgão , Adulto Jovem
20.
Hum Mol Genet ; 27(16): 2927-2939, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29860447

RESUMO

Genomic imprinting is an epigenetic mechanism leading to parent-of-origin silencing of alleles. So far, the precise number of imprinted regions in humans is uncertain. In this study, we leveraged genome-wide DNA methylation in whole blood measured longitudinally at three time points (birth, childhood and adolescence) and genome-wide association studies (GWAS) data in 740 mother-child duos from the Avon Longitudinal Study of parents and children to identify candidate imprinted loci. We reasoned that cis-meQTLs at genomic regions that were imprinted would show strong evidence of parent-of-origin associations with DNA methylation, enabling the detection of imprinted regions. Using this approach, we identified genome-wide significant cis-meQTLs that exhibited parent-of-origin effects (POEs) at 82 loci, 34 novel and 48 regions previously implicated in imprinting (3.7-10


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Impressão Genômica/genética , Locos de Características Quantitativas/genética , Adolescente , Alelos , Criança , Ilhas de CpG/genética , Feminino , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA