Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(1): 61-70, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29188998

RESUMO

Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Bactérias , Carvão Vegetal , Compostos Férricos , Ácido Láctico , Filogenia , RNA Ribossômico 16S , Solo
2.
Chemosphere ; 195: 260-271, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29272795

RESUMO

The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg-1) and As (0.17 ± 0.01 mg kg-1) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future.


Assuntos
Arsênio/análise , Cádmio/análise , Carvão Vegetal/farmacologia , Oryza/metabolismo , Arsênio/metabolismo , Disponibilidade Biológica , Cádmio/metabolismo , Poluição Ambiental/análise , Ferro/análise , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA