Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Physiol ; 190(1): 165-179, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35471580

RESUMO

Accumulating evidence suggests that peptidoglycan, consistent with a bacterial cell wall, is synthesized around the chloroplasts of many photosynthetic eukaryotes, from glaucophyte algae to early-diverging land plants including pteridophyte ferns, but the biosynthetic pathway has not been demonstrated. Here, we employed mass spectrometry and enzymology in a two-fold approach to characterize the synthesis of peptidoglycan in chloroplasts of the moss Physcomitrium (Physcomitrella) patens. To drive the accumulation of peptidoglycan pathway intermediates, P. patens was cultured with the antibiotics fosfomycin, D-cycloserine, and carbenicillin, which inhibit key peptidoglycan pathway proteins in bacteria. Mass spectrometry of the trichloroacetic acid-extracted moss metabolome revealed elevated levels of five of the predicted intermediates from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) through the uridine diphosphate N-acetylmuramic acid (UDP-MurNAc)-D,L-diaminopimelate (DAP)-pentapeptide. Most Gram-negative bacteria, including cyanobacteria, incorporate meso-diaminopimelic acid (D,L-DAP) into the third residue of the stem peptide of peptidoglycan, as opposed to L-lysine, typical of most Gram-positive bacteria. To establish the specificity of D,L-DAP incorporation into the P. patens precursors, we analyzed the recombinant protein UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) from both P. patens and the cyanobacterium Anabaena sp. (Nostoc sp. strain PCC 7120). Both ligases incorporated D,L-DAP in almost complete preference to L-Lys, consistent with the mass spectrophotometric data, with catalytic efficiencies similar to previously documented Gram-negative bacterial MurE ligases. We discuss how these data accord with the conservation of active site residues common to DL-DAP-incorporating bacterial MurE ligases and of the probability of a horizontal gene transfer event within the plant peptidoglycan pathway.


Assuntos
Parede Celular , Peptidoglicano , Bactérias/metabolismo , Parede Celular/metabolismo , Cloroplastos/metabolismo , Bactérias Gram-Negativas/metabolismo , Ligases/metabolismo , Lisina/metabolismo , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Difosfato de Uridina/metabolismo
2.
New Phytol ; 234(1): 149-163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032334

RESUMO

The CLAVATA pathway is a key regulator of stem cell function in the multicellular shoot tips of Arabidopsis, where it acts via the WUSCHEL transcription factor to modulate hormone homeostasis. Broad-scale evolutionary comparisons have shown that CLAVATA is a conserved regulator of land plant stem cell function, but CLAVATA acts independently of WUSCHEL-like (WOX) proteins in bryophytes. The relationship between CLAVATA, hormone homeostasis and the evolution of land plant stem cell functions is unknown. Here we show that in the moss, Physcomitrella (Physcomitrium patens), CLAVATA affects stem cell activity by modulating hormone homeostasis. CLAVATA pathway genes are expressed in the tip cells of filamentous tissues, regulating cell identity, filament branching, plant spread and auxin synthesis. The receptor-like kinase PpRPK2 plays the major role, and Pprpk2 mutants have abnormal responses to cytokinin, auxin and auxin transport inhibition, and show reduced expression of PIN auxin transporters. We propose a model whereby PpRPK2 modulates auxin gradients in filaments to determine stem cell identity and overall plant form. Our data indicate that CLAVATA-mediated auxin homeostasis is a fundamental property of plant stem cell function, probably exhibited by the last shared common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Briófitas , Bryopsida , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(49): 24892-24899, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744875

RESUMO

Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module. Early-diverging aeroterrestrial algae mount a dehydration response that is similar to that of land plants, but that does not depend on ABA: Although ABA synthesis is widespread among algal species, ABA-dependent responses are not detected, and algae lack an ABA-binding PYL homolog. This raises the key question of how ABA signaling arose in the earliest land plants. Here, we systematically characterized ABA receptor-like proteins from major land plant lineages, including a protein found in the algal sister lineage of land plants. We found that the algal PYL-homolog encoded by Zygnema circumcarinatum has basal, ligand-independent activity of PP2C repression, suggesting this to be an ancestral function. Similarly, a liverwort receptor possesses basal activity, but it is further activated by ABA. We propose that co-option of ABA to control a preexisting PP2C-SnRK2-dependent desiccation-tolerance pathway enabled transition from an all-or-nothing survival strategy to a hormone-modulated, competitive strategy by enabling continued growth of anatomically diversifying vascular plants in dehydrative conditions, enabling them to exploit their new environment more efficiently.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Carofíceas/fisiologia , Embriófitas/fisiologia , Ligantes , Proteína Fosfatase 2C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/metabolismo , Evolução Biológica , Regulação da Expressão Gênica de Plantas , Hepatófitas/metabolismo , Proteína Fosfatase 2C/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia
4.
Development ; 143(18): 3306-14, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27407102

RESUMO

The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system.


Assuntos
Bryopsida/metabolismo , Estômatos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Plant Cell ; 28(6): 1310-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27194706

RESUMO

The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.


Assuntos
Ácido Abscísico/farmacologia , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Bryopsida/genética , Cristalografia por Raios X , Dessecação , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Mutação , Pressão Osmótica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Secundária de Proteína
6.
J Exp Bot ; 69(20): 4971-4985, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032264

RESUMO

Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of ß-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.


Assuntos
Arabidopsis/genética , Bryopsida/genética , Regulação da Expressão Gênica de Plantas/genética , Peroxissomos/metabolismo , Transcrição Gênica , Triticum/genética , Ácido Abscísico/metabolismo , Dessecação , Secas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
New Phytol ; 209(2): 576-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542980

RESUMO

Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 µm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.


Assuntos
Bryopsida/citologia , Bryopsida/genética , Peroxissomos/genética , Proteínas de Plantas/genética , Bryopsida/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família Multigênica , Mutação , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/patologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Saccharomyces cerevisiae/genética
8.
Nucleic Acids Res ; 42(19): 11965-78, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25260587

RESUMO

The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.


Assuntos
Bryopsida/genética , Recombinação Homóloga , Meiose/genética , Proteínas de Plantas/fisiologia , Rad51 Recombinase/fisiologia , Bryopsida/anatomia & histologia , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Dano ao DNA , DNA Helicases/genética , DNA Helicases/fisiologia , Deleção de Genes , Fenótipo , Proteínas de Plantas/genética , Rad51 Recombinase/genética
9.
New Phytol ; 205(1): 390-401, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195943

RESUMO

The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function.


Assuntos
Evolução Biológica , Biopolímeros/biossíntese , Vias Biossintéticas , Carotenoides/biossíntese , Infertilidade das Plantas , Pólen/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Esporos/ultraestrutura
10.
Nucleic Acids Res ; 40(8): 3496-510, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210882

RESUMO

The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.


Assuntos
Bryopsida/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Marcação de Genes , Proteínas de Plantas/fisiologia , Bryopsida/crescimento & desenvolvimento , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Plantas/genética
12.
Nat Commun ; 12(1): 4470, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294690

RESUMO

Gravity is a critical environmental factor regulating directional growth and morphogenesis in plants, and gravitropism is the process by which plants perceive and respond to the gravity vector. The cytoskeleton is proposed to play important roles in gravitropism, but the underlying mechanisms are obscure. Here we use genetic screening in Physcomitrella patens, to identify a locus GTRC, that when mutated, reverses the direction of protonemal gravitropism. GTRC encodes a processive minus-end-directed KCHb kinesin, and its N-terminal, C-terminal and motor domains are all essential for transducing the gravity signal. Chimeric analysis between GTRC/KCHb and KCHa reveal a unique role for the N-terminus of GTRC in gravitropism. Further study shows that gravity-triggered normal asymmetric distribution of actin filaments in the tip of protonema is dependent on GTRC. Thus, our work identifies a microtubule-based cellular motor that determines the direction of plant gravitropism via mediating the asymmetric distribution of actin filaments.


Assuntos
Bryopsida/fisiologia , Gravitropismo/fisiologia , Cinesinas/fisiologia , Proteínas de Plantas/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Sequência de Bases , Bryopsida/genética , Mapeamento Cromossômico , Citoesqueleto/química , Citoesqueleto/fisiologia , DNA de Plantas/genética , Genes de Plantas , Gravitropismo/genética , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/fisiologia , Mutagênese , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos
14.
New Phytol ; 188(3): 750-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20696009

RESUMO

• SOS1 is an Na(+)/H(+) antiporter that plays a central role in Na(+) tolerance in land plants. SOS1 mediation of Na(+) efflux has been studied in plasma-membrane vesicles and deduced from the SOS1 suppression of the Na(+) sensitivity of yeast mutants defective in Na(+) -efflux. However, SOS1-mediated Na(+) efflux has not been characterized in either plant or yeast cells. Here, we use Physcomitrella patens to investigate the function of SOS1 in planta. • In P. patens, a nonvascular plant in which the study of ion cellular fluxes is technically simple, the existence of two SOS1 genes suggests that the Na(+) efflux remaining after the deletion of the ENA1 ATPase is mediated by a SOS1 system. Therefore, we cloned the P. patens SOS1 and SOS1B genes (PpSOS1 and PpSOS1B, respectively) and complementary DNAs, and constructed the PpΔsos1 and PpΔena1/PpΔsos1 deletion lines by gene targeting. • Comparison of wild-type, and PpΔsos1 and PpΔena1/PpΔsos1 mutant lines revealed that PpSOS1 is crucial for Na(+) efflux and that the PpΔsos1 line, and especially the PpΔena1/PpΔsos1 lines, showed excessive Na(+) accumulation and Na(+)-triggered cell death. The PpΔsos1 and PpΔena1/PpΔsos1 lines showed impaired high-affinity K(+) uptake. • Our data support the hypothesis that PpSOS1 mediates cellular Na(+) efflux and that PpSOS1 enhances K(+) uptake by an indirect effect.


Assuntos
Bryopsida/metabolismo , Genes de Plantas , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Estresse Fisiológico/genética , Bryopsida/genética , Clonagem Molecular , DNA Complementar , Marcação de Genes , Mutação , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Nat Plants ; 6(3): 259-272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32170292

RESUMO

Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.


Assuntos
Anthocerotophyta/genética , Evolução Biológica , Embriófitas/fisiologia , Genoma de Planta , Características de História de Vida
16.
Plant J ; 56(5): 855-66, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18657236

RESUMO

The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for 'reverse genetic' analysis by virtue of its outstanding ability to undertake targeted transgene integration by homologous recombination. However, gene identification through mutagenesis and map-based cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers [amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely populated with molecular markers and anchored to the genome sequence now provides a resource for forward genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene function has evolved for the acquisition of complex developmental strategies within the plant kingdom.


Assuntos
Bryopsida/genética , Mapeamento Cromossômico , Ligação Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular
18.
Commun Biol ; 2: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675528

RESUMO

The SNF1-related protein kinase 2 (SnRK2) family includes key regulators of osmostress and abscisic acid (ABA) responses in angiosperms and can be classified into three subclasses. Subclass III SnRK2s act in the ABA response while ABA-nonresponsive subclass I SnRK2s are regulated through osmostress. Here we report that an ancient subclass III SnRK2-based signalling module including ABA and an upstream Raf-like kinase (ARK) exclusively protects the moss Physcomitrella patens from drought. Subclass III SnRK2s from both Arabidopsis and from the semiterrestrial alga Klebsormidium nitens, which contains all the components of ABA signalling except ABA receptors, complement Physcomitrella snrk2 - mutants, whereas Arabidopsis subclass I SnRK2 cannot. We propose that the earliest land plants developed the ABA/ARK/subclass III SnRK2 signalling module by recruiting ABA to regulate a pre-existing dehydration response and that subsequently a novel subclass I SnRK2 system evolved in vascular plants conferring osmostress protection independently from the ancient system.

19.
Nucleic Acids Res ; 34(21): 6205-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17090599

RESUMO

The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. 'Targeted gene replacement' (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the latter instance simultaneous, multiple, independent integration of different transgenes occurs at the targeted loci. In both single gene and 'batch' transformations, DNA can also be found to undergo 'targeted insertion' (TI), integrating at one end of the targeted locus by HR with one flanking sequence of the vector accompanied by an apparent non-homologous end-joining (NHEJ) event at the other. Untargeted integration at nonhomologous sites also occurs, but at a lower frequency. Molecular analysis of TI at a single locus shows that this occurs as a consequence of concatenation of the transforming DNA, in planta, prior to integration, followed by HR between a single site in the genomic target and two of its repeated homologues in the concatenated vector. This reinforces the view that HR is the major pathway by which transforming DNA is integrated in Physcomitrella.


Assuntos
Bryopsida/genética , DNA Concatenado/química , Marcação de Genes , Recombinação Genética , Alelos , Sequência de Bases , DNA de Plantas/química , Genes de Plantas , Vetores Genéticos , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transformação Genética
20.
Curr Biol ; 28(15): 2365-2376.e5, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30033333

RESUMO

How genes shape diverse plant and animal body forms is a key question in biology. Unlike animal cells, plant cells are confined by rigid cell walls, and cell division plane orientation and growth rather than cell movement determine overall body form. The emergence of plants on land coincided with a new capacity to rotate stem cell divisions through multiple planes, and this enabled three-dimensional (3D) forms to arise from ancestral forms constrained to 2D growth. The genes involved in this evolutionary innovation are largely unknown. The evolution of 3D growth is recapitulated during the development of modern mosses when leafy shoots arise from a filamentous (2D) precursor tissue. Here, we show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella. We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis. We report that roles for CLAVATA in regulating cell proliferation and cell fate are also shared and that CLAVATA-like peptides act via conserved receptor components in Physcomitrella. Our results suggest that CLAVATA was a genetic novelty enabling the morphological innovation of 3D growth in land plants.


Assuntos
Bryopsida/genética , Proliferação de Células/genética , Evolução Molecular , Proteínas de Plantas/genética , Evolução Biológica , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA