Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Card Fail ; 28(4): 531-539, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34624511

RESUMO

BACKGROUND: We sought to determine national trends and long term outcomes of post myocardial infarction (MI) heart failure. An MI can be complicated by heart failure; there are limited data describing the contemporary patterns and clinical implications of post-MI heart failure. METHODS AND RESULTS: We studied patients with an MI aged 65 years or older from 2000 to 2013 in a Medicare database. New-onset heart failure after an MI was defined as either heart failure during the index MI admission or a hospitalization for heart failure within 1 year of the index MI event. A trend analysis of the incidence of heart failure was performed, and differences were examined by Gray tests. The 5-year mortality rates were evaluated and differences among heart failure cohorts were ascertained by Gray tests. There were a total of 1,531,638 patients with an MI and 565,291 patients had heart failure (36.0%). The rate of heart failure during index admission was 32.3% and the frequency of heart failure hospitalization within 1 year was 10.4%. Patients with heart failure were older (81 years vs 77 years). The temporal trend from 2001 to 2012 suggested a decrease in the incidence of heart failure during index admission (2001: 34.7%, 2012: 31.2%, Ptrend < .01), as well as heart failure hospitalization within 1 year (2001: 11.3%, 2012: 8.7%, Ptrend < .01). The 5-year mortality rate among patients without heart failure was 38.4% and for patients with any heart failure it was 68.7%. CONCLUSIONS: Post-MI heart failure in older adults occurs in 1 in 3 patients within 1 year; heart failure portends significantly higher long-term mortality.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Idoso , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Hospitalização , Humanos , Incidência , Medicare , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Estados Unidos/epidemiologia
2.
Annu Rev Physiol ; 77: 505-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25293528

RESUMO

Channelopathies are a diverse set of disorders associated with defects in ion channel (and transporter) function. Although the vast majority of channelopathies are linked with inherited mutations that alter ion channel biophysical properties, another group of similar disorders has emerged that alter ion channel synthesis, membrane trafficking, and/or posttranslational modifications. In fact, some electrical and episodic disorders have now been identified that are not defects in the ion channel but instead reflect dysfunction in an ion channel (or transporter) regulatory protein. This review focuses on alternative paradigms for physiological disorders associated with protein biosynthesis, folding, trafficking, and membrane retention. Furthermore, the review highlights the role of aberrant posttranslational modifications in acquired channelopathies.


Assuntos
Membrana Celular/fisiologia , Canalopatias/fisiopatologia , Canais Iônicos/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia , Membrana Celular/genética , Canalopatias/genética , Citoesqueleto/genética , Citoesqueleto/fisiologia , Humanos , Canais Iônicos/genética , Modelos Biológicos , Mutação/genética , Fenótipo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/genética , Transporte Proteico/genética
3.
J Biol Chem ; 290(19): 12210-21, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25825486

RESUMO

Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca(2+) channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca(2+) current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca(2+) channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Endossomos/metabolismo , Átrios do Coração/metabolismo , Alelos , Animais , Cálcio/química , Canais de Cálcio Tipo T/genética , Doenças Cardiovasculares/metabolismo , Eletrocardiografia , Regulação da Expressão Gênica , Frequência Cardíaca , Ventrículos do Coração/citologia , Camundongos , Camundongos Knockout , Células Musculares/citologia , Mutação , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
4.
Circulation ; 131(8): 695-708, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25632041

RESUMO

BACKGROUND: The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked to cardiac pathologies, including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction and cardiac electric activity is not well understood and often overlooked in the cardiac arrhythmia field. METHODS AND RESULTS: Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that ßII spectrin, an actin-associated molecule, is essential for the posttranslational targeting and localization of critical membrane proteins in heart. ßII spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/ßII spectrin interaction, leading to severe human arrhythmia phenotypes. Mice lacking cardiac ßII spectrin display lethal arrhythmias, aberrant electric and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, ßII spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes, including the Na/Ca exchanger, ryanodine receptor 2, ankyrin-B, actin, and αII spectrin. Finally, we observe accelerated heart failure phenotypes in ßII spectrin-deficient mice. CONCLUSIONS: Our findings identify ßII spectrin as critical for normal myocyte electric activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology.


Assuntos
Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Citoesqueleto/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Espectrina/fisiologia , Sequência de Aminoácidos , Animais , Anquirinas/genética , Anquirinas/fisiologia , Arritmias Cardíacas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Microtúbulos/fisiologia , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Espectrina/análise , Espectrina/química
5.
Am J Physiol Heart Circ Physiol ; 310(11): H1583-91, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106045

RESUMO

ß2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of ß2-spectrin for vertebrate function is illustrated by dysfunction of ß2-spectrin-based pathways in disease. Recently, defects in ß2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of ß2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that ß2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, ß2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, ß2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced ß2-spectrin protein levels. Mechanistically, we identify that ß2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca(2+)- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca(2+)- and calpain-dependent loss of ß2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that ß2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca(2+)- and calpain-dependent proteolysis.


Assuntos
Fibrilação Atrial/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Espectrina/metabolismo , Adulto , Idoso , Animais , Anquirinas/metabolismo , Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Calpaína/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Cães , Regulação para Baixo , Feminino , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteólise , Transdução de Sinais , Volume Sistólico , Função Ventricular Esquerda
6.
Circ Res ; 115(11): 929-38, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25239140

RESUMO

RATIONALE: Nav1.5 (SCN5A) is the primary cardiac voltage-gated Nav channel. Nav1.5 is critical for cardiac excitability and conduction, and human SCN5A mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Nav1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, therapies to target select Nav1.5 properties have remained at the forefront of cardiovascular medicine. However, despite years of investigation, the fundamental pathways governing Nav1.5 membrane targeting, assembly, and regulation are still largely undefined. OBJECTIVE: Define the in vivo mechanisms underlying Nav1.5 membrane regulation. METHODS AND RESULTS: Here, we define the molecular basis of an Nav channel regulatory platform in heart. Using new cardiac-selective ankyrin-G(-/-) mice (conditional knock-out mouse), we report that ankyrin-G targets Nav1.5 and its regulatory protein calcium/calmodulin-dependent kinase II to the intercalated disc. Mechanistically, ßIV-spectrin is requisite for ankyrin-dependent targeting of calcium/calmodulin-dependent kinase II-δ; however, ßIV-spectrin is not essential for ankyrin-G expression. Ankyrin-G conditional knock-out mouse myocytes display decreased Nav1.5 expression/membrane localization and reduced INa associated with pronounced bradycardia, conduction abnormalities, and ventricular arrhythmia in response to Nav channel antagonists. Moreover, we report that ankyrin-G links Nav channels with broader intercalated disc signaling/structural nodes, as ankyrin-G loss results in reorganization of plakophilin-2 and lethal arrhythmias in response to ß-adrenergic stimulation. CONCLUSIONS: Our findings provide the first in vivo data for the molecular pathway required for intercalated disc Nav1.5 targeting/regulation in heart. Further, these new data identify the basis of an in vivo cellular platform critical for membrane recruitment and regulation of Nav1.5.


Assuntos
Potenciais de Ação , Anquirinas/metabolismo , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Anquirinas/genética , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Placofilinas/metabolismo , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Bloqueadores dos Canais de Sódio/farmacologia , Espectrina/metabolismo
7.
Circ Res ; 115(1): 68-78, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24759929

RESUMO

RATIONALE: Cardiac function is dependent on the coordinate activities of membrane ion channels, transporters, pumps, and hormone receptors to tune the membrane electrochemical gradient dynamically in response to acute and chronic stress. Although our knowledge of membrane proteins has rapidly advanced during the past decade, our understanding of the subcellular pathways governing the trafficking and localization of integral membrane proteins is limited and essentially unstudied in vivo. In the heart, to our knowledge, there are no in vivo mechanistic studies that directly link endosome-based machinery with cardiac physiology. OBJECTIVE: To define the in vivo roles of endosome-based cellular machinery for cardiac membrane protein trafficking, myocyte excitability, and cardiac physiology. METHODS AND RESULTS: We identify the endosome-based Eps15 homology domain 3 (EHD3) pathway as essential for cardiac physiology. EHD3-deficient hearts display structural and functional defects including bradycardia and rate variability, conduction block, and blunted response to adrenergic stimulation. Mechanistically, EHD3 is critical for membrane protein trafficking, because EHD3-deficient myocytes display reduced expression/localization of Na/Ca exchanger and L-type Ca channel type 1.2 with a parallel reduction in Na/Ca exchanger-mediated membrane current and Cav1.2-mediated membrane current. Functionally, EHD3-deficient myocytes show increased sarcoplasmic reticulum [Ca], increased spark frequency, and reduced expression/localization of ankyrin-B, a binding partner for EHD3 and Na/Ca exchanger. Finally, we show that in vivo EHD3-deficient defects are attributable to cardiac-specific roles of EHD3 because mice with cardiac-selective EHD3 deficiency demonstrate both structural and electric phenotypes. CONCLUSIONS: These data provide new insight into the critical role of endosome-based pathways in membrane protein targeting and cardiac physiology. EHD3 is a critical component of protein trafficking in heart and is essential for the proper membrane targeting of select cellular proteins that maintain excitability.


Assuntos
Proteínas de Transporte/fisiologia , Endossomos/fisiologia , Coração/fisiologia , Animais , Anquirinas/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Frequência Cardíaca , Camundongos , Miócitos Cardíacos/fisiologia , Volume Sistólico
8.
J Biol Chem ; 289(8): 5285-95, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24394417

RESUMO

N-type and P/Q-type calcium channels are documented players in the regulation of synaptic function; however, the mechanisms underlying their expression and cellular targeting are poorly understood. Ankyrin polypeptides are essential for normal integral membrane protein expression in a number of cell types, including neurons, cardiomyocytes, epithelia, secretory cells, and erythrocytes. Ankyrin dysfunction has been linked to defects in integral protein expression, abnormal cellular function, and disease. Here, we demonstrate that ankyrin-B associates with Cav2.1 and Cav2.2 in cortex, cerebellum, and brain stem. Additionally, using in vitro and in vivo techniques, we demonstrate that ankyrin-B, via its membrane-binding domain, associates with a highly conserved motif in the DII/III loop domain of Cav2.1 and Cav2.2. Further, we demonstrate that this domain is necessary for proper targeting of Cav2.1 and Cav2.2 in a heterologous system. Finally, we demonstrate that mutation of a single conserved tyrosine residue in the ankyrin-binding motif of both Cav2.1 (Y797E) and Cav2.2 (Y788E) results in loss of association with ankyrin-B in vitro and in vivo. Collectively, our findings identify an interaction between ankyrin-B and both Cav2.1 and Cav2.2 at the amino acid level that is necessary for proper Cav2.1 and Cav2.2 targeting in vivo.


Assuntos
Anquirinas/metabolismo , Canais de Cálcio Tipo N/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Encéfalo , Canais de Cálcio Tipo N/química , Sequência Conservada , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Ligação Proteica , Células de Purkinje/metabolismo , Ratos , Tirosina/metabolismo
9.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23008441

RESUMO

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Cães , Variação Genética , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética
10.
J Mol Cell Cardiol ; 52(5): 1183-90, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406195

RESUMO

Electrical and structural remodeling during the progression of cardiovascular disease is associated with adverse outcomes subjecting affected patients to overt heart failure (HF) and/or sudden death. Dysfunction in integral membrane protein trafficking has long been linked with maladaptive electrical remodeling. However, little is known regarding the molecular identity or function of these intracellular targeting pathways in the heart. Eps15 homology domain-containing (EHD) gene products (EHD1-4) are polypeptides linked with endosomal trafficking, membrane protein recycling, and lipid homeostasis in a wide variety of cell types. EHD3 was recently established as a critical mediator of membrane protein trafficking in the heart. Here, we investigate the potential link between EHD3 function and heart disease. Using four different HF models including ischemic rat heart, pressure overloaded mouse heart, chronic pacing-induced canine heart, and non-ischemic failing human myocardium we provide the first evidence that EHD3 levels are consistently increased in HF. Notably, the expression of the Na/Ca exchanger (NCX1), targeted by EHD3 in heart is similarly elevated in HF. Finally, we identify a molecular pathway for EHD3 regulation in heart failure downstream of reactive oxygen species and angiotensin II signaling. Together, our new data identify EHD3 as a previously unrecognized component of the cardiac remodeling pathway.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Angiotensina II/metabolismo , Animais , Proteínas de Transporte/genética , Estudos de Casos e Controles , Células Cultivadas , Cães , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
11.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203314

RESUMO

Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.


Assuntos
Miocárdio , Junções Íntimas , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
12.
J Mol Cell Cardiol ; 49(1): 25-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20353795

RESUMO

Increased cardiac ryanodine receptor (RyR)-dependent diastolic SR Ca leak is present in heart failure and in conditions when adrenergic tone is high. Increasing Ca leak from the SR could result in spontaneous Ca wave (SCaW) formation. SCaWs activate the inward Na/Ca exchanger (NCX) current causing a delayed afterdepolarization (DAD), potentially leading to arrhythmia. Here we examine SCaWs in ventricular myocytes isolated from failing and healthy rabbit hearts. Myocytes from healthy hearts did not exhibit SCaWs under baseline conditions versus 43% of those exposed to isoproterenol (ISO). This ISO-induced increase in activity was reversed by inhibition of Ca-calmodulin-dependent protein kinase II (CaMKII) by KN93. Inhibition of cAMP-dependent protein kinase (PKA) by H89 had no observed effect. Of myocytes treated with forskolin 50% showed SCaW activity, attributable to a large increase in SR Ca load ([Ca](SRT)) versus control. At similar [Ca](SRT) (121muM) myocytes treated with ISO plus KN93 had significantly fewer SCaWs versus those treated with ISO or ISO plus H89 (0.2+/-0.28 vs. 1.1+/-0.28 and 1.29+/-0.39 SCaWs cell(-)(1), respectively). In myocytes isolated from failing hearts ISO induced an increase in the percentage of cells generating SCaWs vs. baseline (74% vs. 11%) with no increase in [Ca](SRT). Inhibiting CaMKII reversed this effect (14%). At similar [Ca](SRT) (71microM) myocytes treated with ISO or ISO plus H89 had significantly more SCaWs per cell vs. untreated (2.5+/-0.5; 1.6+/-0.7 vs. 0.36+/-0.3, respectively). Treatment with ISO plus KN93 completely abolished this effect. The evidence suggests the ISO-dependent increase in SCaW activity in both healthy and failing myocytes is CaMKII-dependent, implicating CaMKII in arrhythmogenesis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Diástole/efeitos dos fármacos , Insuficiência Cardíaca/complicações , Ventrículos do Coração/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Isoquinolinas , Células Musculares/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Coelhos , Sulfonamidas
14.
J Cardiovasc Transl Res ; 12(2): 95-106, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30671717

RESUMO

Heart failure is a major cause of morbidity and mortality around the world, and myocardial infarction is its leading cause. Myocardial infarction destroys viable myocardium, and this dead tissue is replaced by a non-contractile scar that results in impaired cardiac function and a significantly increased likelihood of the patient developing heart failure. Limiting infarct scar size has been the target of pre-clinical and clinical investigations for decades. However, beyond reperfusion, few therapies have translated into the clinic that limit its formation. New approaches are needed. This review will focus on new clinical and pre-clinical data demonstrating that acute ventricular unloading prior to reperfusion by means of percutaneous left ventricular support devices reduces ischemia-reperfusion injury and limits infarct scar size. Emphasis will be given to summarizing our current mechanistic understanding of this new therapeutic approach to treating myocardial infarction.


Assuntos
Insuficiência Cardíaca/prevenção & controle , Coração Auxiliar , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica , Implantação de Prótese/instrumentação , Função Ventricular Esquerda , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Reperfusão Miocárdica/efeitos adversos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Consumo de Oxigênio , Desenho de Prótese , Implantação de Prótese/efeitos adversos , Recuperação de Função Fisiológica , Fatores de Risco , Resultado do Tratamento
16.
JACC Basic Transl Sci ; 3(5): 675-689, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456339

RESUMO

Ankyrin polypeptides are intracellular proteins responsible for targeting cardiac membrane proteins. Here, the authors demonstrate that ankyrin-G plays an unexpected role in normal compensatory physiological remodeling in response to myocardial stress and aging; the authors implicate disruption of ankyrin-G in human heart failure. Mechanistically, the authors illustrate that ankyrin-G serves as a key nodal protein required for cardiac myofilament integration with the intercalated disc. Their data define novel in vivo mechanistic roles for ankyrin-G, implicate ankyrin-G as necessary for compensatory cardiac physiological remodeling under stress, and implicate disruption of ankyrin-G in the development and progression of human heart failure.

17.
Circ Res ; 97(12): 1314-22, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16269653

RESUMO

Abnormal release of Ca from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction and arrhythmogenesis in heart failure (HF). We previously demonstrated decreased Ca transient amplitude and SR Ca load associated with increased Na/Ca exchanger expression and enhanced diastolic SR Ca leak in an arrhythmogenic rabbit model of nonischemic HF. Here we assessed expression and phosphorylation status of key Ca handling proteins and measured SR Ca leak in control and HF rabbit myocytes. With HF, expression of RyR2 and FK-506 binding protein 12.6 (FKBP12.6) were reduced, whereas inositol trisphosphate receptor (type 2) and Ca/calmodulin-dependent protein kinase II (CaMKII) expression were increased 50% to 100%. The RyR2 complex included more CaMKII (which was more activated) but less calmodulin, FKBP12.6, and phosphatases 1 and 2A. The RyR2 was more highly phosphorylated by both protein kinase A (PKA) and CaMKII. Total phospholamban phosphorylation was unaltered, although it was reduced at the PKA site and increased at the CaMKII site. SR Ca leak in intact HF myocytes (which is higher than in control) was reduced by inhibition of CaMKII but was unaltered by PKA inhibition. CaMKII inhibition also increased SR Ca content in HF myocytes. Our results suggest that CaMKII-dependent phosphorylation of RyR2 is involved in enhanced SR diastolic Ca leak and reduced SR Ca load in HF, and may thus contribute to arrhythmias and contractile dysfunction in HF.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Arritmias Cardíacas/etiologia , Benzilaminas/farmacologia , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , ATPases Transportadoras de Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Ecocardiografia , Receptores de Inositol 1,4,5-Trifosfato , Miócitos Cardíacos/metabolismo , Fosforilação , Coelhos , Receptores Citoplasmáticos e Nucleares/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Sulfonamidas/farmacologia , Proteína 1A de Ligação a Tacrolimo/análise , Proteínas de Ligação a Tacrolimo/análise
18.
Heart Rhythm ; 13(9): 1932-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27298202

RESUMO

BACKGROUND: Human ANK2 (ankyrin-B) loss-of-function variants are directly linked with arrhythmia phenotypes. However, in atypical non-ion channel arrhythmia genes such as ANK2 that lack the same degree of robust structure/function and clinical data, it may be more difficult to assign variant disease risk based simply on variant location, minor allele frequency, and/or predictive structural algorithms. The human ankyrin-B p.L1622I variant found in arrhythmia probands displays significant diversity in minor allele frequency across populations. OBJECTIVE: The objective of this study was to directly test the in vivo impact of ankyrin-B p.L1622I on cardiac electrical phenotypes and arrhythmia risk using a new animal model. METHODS: We tested arrhythmia phenotypes in a new "knock-in" animal model harboring the human ankyrin-B p.L1622I variant. RESULTS: Ankyrin-B p.L1622I displays reduced posttranslational expression in vivo, resulting in reduced cardiac ankyrin-B expression and reduced association with binding-partner Na/Ca exchanger. Ankyrin-B(L1622I/L1622I) mice display changes in heart rate, atrioventricular and intraventricular conduction, and alterations in repolarization. Furthermore, ankyrin-B(L1622I/L1622I) mice display catecholamine-dependent arrhythmias. At the cellular level, ankyrin-B(L1622I/L1622I) myocytes display increased action potential duration and severe arrhythmogenic afterdepolarizations that provide a mechanistic rationale for the arrhythmias. CONCLUSION: Our findings support in vivo arrhythmogenic phenotypes of an ANK2 variant with unusual frequency in select populations. On the basis of our findings and current clinical data, we support classification of p.L1622I as a "mild" loss-of-function variant that may confer arrhythmia susceptibility in the context of secondary risk factors including environment, medication, and/or additional genetic variation.


Assuntos
Anquirinas/genética , Arritmias Cardíacas/genética , Potenciais de Ação/genética , Animais , Arritmias Cardíacas/etnologia , Arritmias Cardíacas/fisiopatologia , População Negra/genética , Modelos Animais de Doenças , Interação Gene-Ambiente , Predisposição Genética para Doença/etnologia , Variação Genética , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Medição de Risco/etnologia , Fatores de Risco
19.
Front Physiol ; 6: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709583

RESUMO

The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart. In the cardiomyocyte, these pathways are essential for the regulation of Ca(2+), both at the level of the plasma membrane, but also in local cellular domains. One intracellular pathway often overlooked in relation to cardiovascular Ca(2+) regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. As the endosomal system acts to regulate the expression and localization of membrane proteins central for cardiac Ca(2+) regulation, understanding the in vivo function of this system in the heart is critical. This review will focus on endosome-based protein trafficking in the heart in both health and disease with special emphasis for the role of endocytic regulatory proteins, C-terminal Eps15 homology domain-containing proteins (EHDs).

20.
J Am Heart Assoc ; 4(5)2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015324

RESUMO

BACKGROUND: Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. METHODS AND RESULTS: We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. CONCLUSIONS: We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Mutação , Proteínas do Tecido Nervoso/genética , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio/genética , Vasodilatadores/uso terapêutico , Fibrilação Ventricular/genética , Fibrilação Ventricular/fisiopatologia , 4-Aminopiridina/uso terapêutico , Adulto , Cilostazol , Quimioterapia Combinada , Eletrocardiografia , Exoma/genética , Variação Genética , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Análise de Sequência de DNA , Tetrazóis/uso terapêutico , Resultado do Tratamento , Fibrilação Ventricular/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA