Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(37): 24045-24057, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30204161

RESUMO

Living cells are crowded with dynamic distributions of macromolecules and organelles that influence protein diffusion, molecular transport, biochemical reactions, and protein assembly. Here, we test the hypothesis that the diffusion of single molecules deviates from Brownian motion as described by the Stokes-Einstein model in a manner that depends on the viscosity range, the chemical structure of both the diffusing species and the crowding agents, and the spatio-temporal resolution of the employed analytical methods. Our size-dependent fluorescent probes are rhodamine-110, quantum dots, enhanced green fluorescent proteins (EGFP), and mCerulean3-linker-mCitrine FRET probes with various linker length and flexibility. Using fluorescence correlation spectroscopy (FCS), we investigated the translational diffusion of structure-dependent fluorescent probes, at the single-molecule level, in homogeneous (glycerol) and heterogeneous (Ficoll-70) solutions as a function of the bulk viscosity. Complementary rotational diffusion studies using time-resolved anisotropy enable us to assess weak interactions in crowded and viscous environments. Overall, our results show negative deviation from the Stokes-Einstein model in a fluorophore- and environment-dependent manner. In addition, the deviation between the FCS-measured hydrodynamic radius of the FRET probes in a buffer at room temperature and the molecular-weight based estimate (Perrin equation) as the number of the amino acid residues in the linker increases. These studies are essential for quantitative biophysics using fluorescence- and diffusion-based studies of protein-protein interactions and biomolecular transport in living cells.


Assuntos
Corantes Fluorescentes/química , Difusão , Hidrodinâmica , Tamanho da Partícula , Rotação , Espectrometria de Fluorescência
2.
J Phys Chem B ; 121(23): 5688-5698, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28520430

RESUMO

Living cells are crowded with macromolecules and organelles. As a result, there is an urgent need for molecular sensors for quantitative, site-specific assessment of the macromolecular crowding effects on a myriad of biochemical processes toward quantitative cell biology and biophysics. Here we investigate the excited-state dynamics and translational diffusion of a novel FRET sensor (mCerulean-linker-mCitrine) in a buffer (PBS, pH 7.4) at room temperature. Complementary experiments were carried out on free CFP, YFP, and the cleaved FRET probe as controls. The wavelength-dependent fluorescence lifetime measurements of the donor and acceptor in the FRET probe, using the time-correlated single-photon counting technique, indicate an energy transfer efficiency of 6.8 ± 0.9% in PBS, with distinct excited-state dynamics from the recombinant CFP and YFP. The estimated mCerulean-mCitrine distance in this FRET probe is 7.7 ± 0.2 nm. The energy transfer efficiency increases (11.5 ± 0.9%) as the concentration of Ficoll-70 increases over the range of 0-300 g/L with an estimated mCerulean-mCitrine distance of 6.1 ± 0.2 nm. Complementary time-resolved anisotropy measurements suggest that the rotational diffusion of hetero-FRET in PBS is sensitive to the energy transfer from the donor to the acceptor. The results also suggest that the linker, -(GSG)6A(EAAAK)6A(GSG)6A(EAAAK)6A(GSG)6-, is rather flexible, and the observed rotational dynamics is likely to be due to a segmental mobility of the FRET pairs rather than an overall tumbling motion of a rigid probe. Comparative studies on a new construct of a FRET probe with a shorter, more flexible linker, mCerulean-(GSG)18-mCitrine, reveal enhanced energy transfer efficiency. On the millisecond time scale, fluorescence fluctuation analyses of the acceptor (excited at 488 nm) provide a means to examine the translational diffusion coefficient of the FRET probe. The results also suggest that the linker is flexible in this FRET probe, and the observed diffusion coefficient is faster than predicted as compared to the cleaved FRET probe. Our results serve as a point of reference for this FRET probe in a buffer toward its full potential as a sensor for macromolecular crowding in living cells and tissues.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fluorescência , Corantes Fluorescentes/química , Teoria Quântica , Proteínas de Bactérias/química , Difusão , Corantes Fluorescentes/síntese química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA