RESUMO
The torsional behaviour of the heart (i.e. the mutual rotation of the cardiac base and apex) was proved to be sensitive to alterations of some cardiovascular parameters, i.e. preload, afterload and contractility. Moreover, pathologies which affect the fibers architecture and cardiac geometry were proved to alter the cardiac torsion pattern. For these reasons, cardiac torsion represents a sensitive index of ventricular performance. The aim of this work is to provide further insight into physiological and pathological alterations of the cardiac torsion by means of computational analyses, combining a structural model of the two ventricles with simple lumped parameter models of both the systemic and the pulmonary circulations. Starting from diagnostic images, a 3D anatomy based geometry of the two ventricles was reconstructed. The myocytes orientation in the ventricles was assigned according to literature data and the myocardium was modelled as an anisotropic hyperelastic material. Both the active and the passive phases of the cardiac cycle were modelled, and different clinical conditions were simulated. The results in terms of alterations of the cardiac torsion in the presence of pathologies are in agreement with experimental literature data. The use of a computational approach allowed the investigation of the stresses and strains in the ventricular wall as well as of the global hemodynamic parameters in the presence of the considered pathologies. Furthermore, the model outcomes highlight how for specific pathological conditions, an altered torsional pattern of the ventricles can be present, encouraging the use of the ventricular torsion in the clinical practice.
Assuntos
Cardiopatias/patologia , Fenômenos Mecânicos , Modelos Anatômicos , Miocárdio/patologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Cardiopatias/fisiopatologia , Hemodinâmica , Rotação , Estresse FisiológicoRESUMO
Several studies report the mechanical properties of skin tissues but their values largely depend on the measurement method. Therefore, we investigated the feasibility of recognizing the cellular constituents mechanical properties of pigmented skin by Confocal Laser Scanner Microscopy (CLSM). With this purpose, an healthy volunteer was examined in three areas nearby a pigmented skin lesion in two configurations: deforming and non deforming the nevus. The tissue displacement of the nevus was then assessed by means of deformable registration of the images in these two configurations. There are several registration strategy able to overcome this task, among them, we proposed two methods with different deformation models: a Free Form Deformation (FFD) model based on b-spline and a second one based on Demons Registration Algorithm (DRA). These two strategies need the definition of several parameters in order to obtain optimal registration performances. Thus, we tuned these parameters by means of simulated data and evaluated their registration abilities on the real in vivo CLSM acquisitions in the two configurations. The results showed that the registration using DRA had a better performance in comparison to the FFD one, in particular in two out of the three areas the DRA performance was significantly better than the FFD one. The registration procedure highlighted deformation differences among the chosen areas.
Assuntos
Algoritmos , Pele/patologia , Feminino , Humanos , Fenômenos Mecânicos , Microscopia Confocal , Pele/química , Pele/metabolismo , Pigmentação da Pele , Adulto JovemRESUMO
Computational models are used to study the combined effect of biomechanical and biochemical factors on coronary in-stent restenosis, which is a postoperative remodeling and regrowth pathology of the stented arteries. More precisely, we address numerical simulations, on the basis of Navier-Stokes and mass transport equations, to study the role of perturbed wall shear stresses and reduced oxygen concentration in a geometrical model reconstructed from a real porcine artery treated with a stent. Joining in vivo and in silico tools of investigation has multiple benefits in this case. On one hand, the geometry of the arterial wall and of the stent closely correspond to a real implanted configuration. On the other hand, the inspection of histological tissue samples informs us on the location and intensity of in-stent restenosis. As a result, we are able to correlate geometrical factors, such as the axial variation of the artery diameter and its curvature; the numerical quantification of biochemical stimuli, such as wall shear stresses; and the availability of oxygen to the inner layers of the artery, with the appearance of in-stent restenosis. This study shows that the perturbation of the vessel curvature could induce hemodynamic conditions that stimulate undesired arterial remodeling.