Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 140(1): 197-207, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27594045

RESUMO

It has recently been reported that a large proportion of human malignant pleural mesothelioma (MPM) cell lines and patient tissue samples present high expression of the c-MYC oncogene. This gene drives several tumorigenic processes and is overexpressed in many cancers. Although c-MYC is a strategic target to restrain cancer processes, no drugs acting as c-MYC inhibitors are available. The novel thienotriazolodiazepine small-molecule bromodomain inhibitor OTX015/MK-8628 has shown potent antiproliferative activity accompanied by c-MYC downregulation in several tumor types. This study was designed to evaluate the growth inhibitory effect of OTX015 on patient-derived MPM473, MPM487 and MPM60 mesothelioma cell lines and its antitumor activity in three patient-derived xenograft models, MPM473, MPM487 and MPM484, comparing it with cisplatin, gemcitabine and pemetrexed, three agents which are currently used to treat MPM in the clinic. OTX015 caused a significant delay in cell growth both in vitro and in vivo. It was the most effective drug in MPM473 xenografts and showed a similar level of activity as the most efficient treatment in the other two MPM models (gemcitabine in MPM487 and cisplatin in MPM484). In vitro studies showed that OTX015 downregulated c-MYC protein levels in both MPM473 and MPM487 cell lines. Our findings represent the first evidence of promising therapeutic activity of OTX015 in mesothelioma.


Assuntos
Acetanilidas/administração & dosagem , Cisplatino/administração & dosagem , Desoxicitidina/análogos & derivados , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Pemetrexede/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetanilidas/farmacologia , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos , Pessoa de Meia-Idade , Pemetrexede/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Int J Cancer ; 139(9): 2047-55, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27388964

RESUMO

Bromodomain and extraterminal (BET) bromodomain (BRD) proteins are epigenetic readers that bind to acetylated lysine residues on chromatin, acting as co-activators or co-repressors of gene expression. BRD2 and BRD4, members of the BET family, are significantly increased in glioblastoma multiforme (GBM), the most common primary adult brain cancer. OTX015 (MK-8628), a novel BRD2/3/4 inhibitor, is under evaluation in dose-finding studies in solid tumors, including GBM. We investigated the pharmacologic characteristics of OTX015 as a single agent and combined with targeted therapy or conventional chemotherapies in glioblastoma cell lines. OTX015 displayed higher antiproliferative effects compared to its analog JQ1, with GI50 values of approximately 0.2 µM. In addition, C-MYC and CDKN1A mRNA levels increased transiently after 4 h-exposure to OTX015, while BRD2, SESN3, HEXIM-1, HIST2H2BE, and HIST1H2BK were rapidly upregulated and sustained after 24 h. Studies in three additional GBM cell lines supported the antiproliferative effects of OTX015. In U87MG cells, OTX015 showed synergistic to additive activity when administered concomitant to or before SN38, temozolomide or everolimus. Single agent oral OTX015 significantly increased survival in mice bearing orthotopic or heterotopic U87MG xenografts. OTX015 combined simultaneously with temozolomide improved mice survival over either single agent. The passage of OTX015 across the blood-brain barrier was demonstrated with OTX015 tumor levels 7 to 15-fold higher than in normal tissues, along with preferential binding of OTX015 to tumor tissue. The significant antitumor effects seen with OTX015 in GBM xenograft models highlight its therapeutic potential in GBM patients, alone or combined with conventional chemotherapies.


Assuntos
Acetanilidas/administração & dosagem , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Acetanilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Sinergismo Farmacológico , Everolimo/administração & dosagem , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Irinotecano , Camundongos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 7(4): 915-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18413805

RESUMO

PEP005 (ingenol-3-angelate) is a novel anticancer agent extracted from Euphorbia peplus that was previously shown to modulate protein kinase C (PKC), resulting in antiproliferative and proapoptotic effects in several human cancer cell lines. In Colo205 colon cancer cells, exposure to PEP005 induced a time- and concentration-dependent decrease of cells in S phase of cell cycle and apoptosis. In Colo205 cells exposed to PEP005, a variety of signaling pathways were activated as shown by increased phosphorylation of PKCdelta, Raf1, extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase, p38 MAPK, and PTEN. PEP005-induced activation of PKCdelta was associated with its translocation from the cytosol to the nucleus and other cellular membranes. Interestingly, PEP005 treatment also resulted in reduced expression of PKCalpha and reduced levels of phosphorylated active form of AKT/protein kinase B. These data suggest that PEP005-induced activation of PKCdelta and reduced expression of PKCalpha resulted in apoptosis by mechanisms mediated by activation of Ras/Raf/MAPK and inhibition of the phosphatidylinositol 3-kinase/AKT signaling pathways. This study supports ongoing efforts targeting PKC isoforms in cancer therapy with PEP005 alone and in combination with other cytotoxic agents.


Assuntos
Neoplasias do Colo/metabolismo , Diterpenos/farmacologia , Ésteres/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias do Colo/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Cell Metab ; 30(2): 303-318.e6, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130467

RESUMO

Cancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies. Here, we uncover a novel link between BRD4, mitochondrial dynamics, and self-renewal of prostate CSCs. Targeting BRD4 by genetic knockdown or chemical inhibitors blocked mitochondrial fission and caused CSC exhaustion and loss of tumorigenic capability. Depletion of CSCs occurred in multiple prostate cancer models, indicating a common vulnerability and dependency on mitochondrial dynamics. These effects depended on rewiring of the BRD4-driven transcription and repression of mitochondrial fission factor (Mff). Knockdown of Mff reproduced the effects of BRD4 inhibition, whereas ectopic Mff expression rescued prostate CSCs from exhaustion. This novel concept of targeting mitochondrial plasticity in CSCs through BRD4 inhibition provides a new paradigm for developing more effective treatment strategies for prostate cancer.


Assuntos
Epigênese Genética/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Senescência Celular , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
5.
ESMO Open ; 3(6): e000387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305939

RESUMO

BACKGROUND: The outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials. MATERIALS AND METHODS: The activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines. RESULTS: Birabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines. CONCLUSION: Our data provide the rationale to evaluate birabresib in patients affected by MCL.

6.
Mol Cancer Ther ; 5(9): 2149-57, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16985047

RESUMO

Oxaliplatin (Eloxatin) is a third-generation platinum derivative with an in vitro and in vivo spectrum of activity distinct from that of cisplatin, especially in colon cancer cells. Here, we studied the molecular basis of this difference on the HCT-116 human colon carcinoma cell line (mismatch repair-deficient, wild-type functional p53). Oxaliplatin inhibited HCT-116 cell proliferation with greater efficacy than cisplatin. At comparable concentrations, cisplatin slowed down the replication phase and activated the G2-M checkpoint, whereas oxaliplatin activated the G1-S checkpoint and completely blocked the G2-M transition. With the aim of finding oxaliplatin-specific target genes and mechanisms differing from those of cisplatin, we established the transcriptional signatures of both products on HCT-116 cells using microarray technology. Based on hierarchical clustering, we found that (a) many more genes were modulated by oxaliplatin compared with cisplatin and (b) among the 117 modulated genes, 79 were regulated similarly by both drugs and, in sharp contrast, 38 genes were dose dependently down-regulated by oxaliplatin and, conversely, up-regulated or unaffected by cisplatin. Interestingly, several cell cycle-related genes encoding proteins involved in DNA replication and G2-M progression belong to this latter group. RNA modulations, confirmed at the protein level, were in accordance with oxaliplatin- and cisplatin-induced cell cycle variations. Beyond the identification of genes affected by both drugs, the identified oxaliplatin-specific target genes could be useful as predictive markers for evaluating and comparing the efficacy and molecular pharmacology of platinum drugs.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Cisplatino/farmacologia , Neoplasias do Colo/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Oxaliplatina , Transcrição Gênica/efeitos dos fármacos
7.
Oncotarget ; 8(5): 7598-7613, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27935867

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subgroup of breast tumors clinically defined by the lack of estrogen, progesterone and HER2 receptors, limiting the use of the targeted therapies employed in other breast malignancies. Recent evidence indicates that c-MYC is a key driver of TNBC. The BET-bromodomain inhibitor OTX015 (MK-8628) has potent antiproliferative activity accompanied by c-MYC down-regulation in several tumor types, and has demonstrated synergism with the mTOR inhibitor everolimus in different models. The aim of this study was to evaluate the anti-tumor activity of OTX015 as single agent and in combination with everolimus in TNBC models. OTX015 was assayed in three human TNBC-derived cell lines, HCC1937, MDA-MB-231 and MDA-MB-468, all showing antiproliferative activity after 72 h (GI50 = 75-650 nM). This was accompanied by cell cycle arrest and decreased expression of cancer stem cells markers. However, c-MYC protein and mRNA levels were only down-regulated in MDA-MB-468 cells. Gene set enrichment analysis showed up-regulation of genes involved in epigenetic control of transcription, chromatin and the cell cycle, and down-regulation of stemness-related genes. In vitro, combination with everolimus was additive in HCC1937 and MDA-MB-231 cells, but antagonistic in MDA-MB-468 cells. In MDA-MB-231 murine xenografts, tumor mass was significantly (p < 0.05) reduced by OTX015 with respect to vehicle-treated animals (best T/C = 40.7%). Although everolimus alone was not active, the combination was more effective than OTX015 alone (best T/C = 20.7%). This work supports current clinical trials with OTX015 in TNBC (NCT02259114).


Assuntos
Acetanilidas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Everolimo/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Semin Oncol ; 33(4): 466-78, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16890801

RESUMO

Protein kinase C (PKC) family comprises more than 12 serine-/threonine-specific isoenzymes. PKC isoenzymes play a complex role in the transduction of signal from tyrosine kinase receptor modulating proliferation, cell cycle, apoptosis, invasion, differentiation, and senescence in both cancer cells and endothelial cells. Thereby, inhibition and/or activation of specific PKCs is thought to control tumor growth by interacting directly with cancer cells and indirectly by blocking tumor angiogenesis. Furthermore, PKCs are known to modulate multi-drug resistance, providing a rational for the combination of PKCs modulators with classical cytotoxic drugs. During the past few years, preclinical and clinical data with first-generation PKC inhibitors/activators provided insight that PKCs may indeed represent attractive targets for the discovery of small molecules with new anticancer properties. In this review, we will provide an overview on the current understanding of PKC participation in chemotherapeutic resistance, the possible implications in cancer treatment, and the potential of most recent PKC inhibitors in molecular cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos/fisiologia , Neoplasias/tratamento farmacológico , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ensaios Clínicos como Assunto , Drogas em Investigação , Humanos , Isoenzimas , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia
9.
Cancer Chemother Pharmacol ; 57(4): 491-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16075278

RESUMO

PURPOSE: This study assessed the cytotoxic effects of irofulven in combination with oxaliplatin and cisplatin in a panel of human cancer cell lines. METHODS: Growth inhibition studies were performed using the human HT29 colon cancer cell line, irofulven-resistant derivative HT29/IF2, breast cancer cell line MCF7, and ovarian cancer line CAOV3. Irofulven-oxaliplatin combinations were compared with irofulven-cisplatin combinations in the same cell lines using similar experimental settings. Cells were exposed for 1 h to irofulven and then for 24 h to oxaliplatin or cisplatin and vice versa. RESULTS: Single agent irofulven displayed cytotoxic effects against human colon HT29 cells, human breast cancer cell lines including MCF7, SKBR3, and ZR-75-1, and human ovarian cancer cell lines CAOV3, OVCAR3, and IGROV1, with OVCAR3 being the most sensitive cancer cell line (IC50: 2.4 microM). In all tested cell lines the oxaliplatin-irofulven combination led to clear evidence of synergistic activity. In HT29 and HT29/IF2, the sequence oxaliplatin followed by irofulven appears to be the most effective whereas in MCF7 cells, irofulven given prior to or simultaneously with oxaliplatin is more effective than the other schedule. The combination displays additive activity toward CAOV3 ovarian cells when irofulven was administered prior to or simultaneously with oxaliplatin and partially synergistic when oxaliplatin was followed by irofulven. In most of the cell lines, the sequence oxaliplatin followed by irofulven appears to be the most effective as compared to other schedules. A combination of irofulven with cisplatin has the same efficacy as with oxaliplatin for the same cell lines. Cell cycle studies show that irofulven increases the proportion of cells in the S phase. Cisplatin-irofulven and oxaliplatin-irofulven combinations block cells in G1/S and potently induce apoptosis. CONCLUSION: Irofulven displays synergistic antiproliferative and pro-apoptotic effects when combined with oxaliplatin over a broad range of concentrations in human colon and breast cancer cells. Acquired resistance to irofulven has limited impact on the effects of cisplatin-irofulven and oxaliplatin-irofulven combinations. Based on these data, irofulven-oxaliplatin and cisplatin-irofulven combinations will be further explored in clinical trials, favoring the use schedules of oxaliplatin given prior to irofulven in patients with cancer.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Antineoplásicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Cisplatino/toxicidade , Neoplasias do Colo/tratamento farmacológico , Compostos Organoplatínicos/toxicidade , Neoplasias Ovarianas/tratamento farmacológico , Sesquiterpenos/toxicidade , Algoritmos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Genes p53/genética , Células HT29 , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Oxaliplatina , Sais de Tetrazólio , Tiazóis
10.
Gastroenterol Clin Biol ; 30(3): 357-63, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16633299

RESUMO

BACKGROUND: The efficacy and benefit of second-line chemotherapy in advanced pancreatic adenocarcinoma has never been demonstrated although it is regularly used. PATIENTS AND METHODS: A randomized phase II study evaluating oxaliplatin alone (OXA), infusional 5-fluorouracil alone (5-FU) and an oxaliplatin/infusional 5-FU combination (OXFU) in untreated advanced pancreatic adenocarcinoma has been conducted. In this trial, a second-line treatment with the OXFU regimen (OXA 130 mg/m2 2-h intravenous (i.v.) infusion combined with 5-FU (1000 mg/m2/day, continuous i.v., days 1-4), every 3 weeks) was offered to patients progressing after single agent treatment. RESULTS: Eighteen out of 32 patients (12 males, median age 57 years) treated in the single agent arms received the OXFU combination in second-line treatment. WHO performance status was at least 2 in 61% of the patients. There was no objective response and 3 patients (17%) had a disease stabilisation. Median time to progression from the start of second-line treatment was 0.9 months. Median overall survival was 4.9 months from the start of front-line therapy and 1.3 months from the start of second-line therapy. CONCLUSION: The results of this trial bring arguments to support a modest value of second-line chemotherapy for advanced pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Adulto , Idoso , Progressão da Doença , Feminino , Fluoruracila/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina
11.
Oncotarget ; 7(36): 58142-58147, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27494885

RESUMO

The bromodomain inhibitor OTX015 (MK-8628) has shown anti-lymphoma activity as a single agent in both the preclinical and clinical settings, as well as in vitro synergism with several anticancer agents. Here, we report in vivo data for OTX015 in combination with the histone deacetylase inhibitor vorinostat, the Bruton's tyrosine kinase inhibitor ibrutinib, the anti-CD20 monoclonal antibody rituximab, and the mTOR inhibitor everolimus in a diffuse large B cell lymphoma model. The antitumor effect of OTX015-containing combinations in SU-DHL-2 xenografts in mice was much stronger than the activity of the corresponding single agents with almost complete tumor eradication for all four combinations. Pharmacokinetic analyses showed similar OTX015 levels in plasma and tumor samples of approximately 1.5 µM, which is equivalent to the concentration showing strong in vitro activity. For all four combinations, mean terminal levels of the bromodomain inhibitor differed from those in mice exposed to single agent OTX015, indicating a need for thorough pharmacokinetic investigations in phase I combination studies. In conclusion, our results provide a strong rationale to explore OTX015-containing combinations in the clinical lymphoma setting.


Assuntos
Acetanilidas/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Acetanilidas/uso terapêutico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Sinergismo Farmacológico , Everolimo/farmacologia , Everolimo/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Rituximab/farmacologia , Rituximab/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Pharmacokinet ; 55(3): 397-405, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26341814

RESUMO

BACKGROUND AND OBJECTIVES: OTX015 (MK-8628) is a novel inhibitor of the bromodomain and extraterminal (BET)-bromodomain (BRD) protein family, binding specifically to bromodomains BRD2/3/4 and impacting the epigenetic regulation of several oncogenes. We characterized the pharmacokinetics of this first-in-class BET-BRD inhibitor administered as a single agent, including population pharmacokinetic modelling. METHODS: A dose-escalation, phase Ib study was performed with oral OTX015 in patients with haematologic malignancies, at doses starting from 10 mg once daily (QD) with continuous or discontinuous schedules. Five or eight blood samples were collected per patient for pharmacokinetic analysis. OTX015 plasma concentrations were determined using validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and analysed using a nonlinear mixed-effects modelling software program. A population pharmacokinetic model was fitted to the data, and patient demographics and clinical chemistry parameters were tested as predictive covariates on the model parameters. RESULTS: Blood samples were analysed from 81 patients treated with OTX015 at doses ranging from 10 to 160 mg QD or 40 mg twice daily (BID), and 633 time-plasma concentrations were available for analysis. A one-compartment open model with linear elimination adequately described OTX015 pharmacokinetics. The most significant covariate was lean body mass (LBM), which decreased the between-subject variability in apparent total body clearance (CL) and the volume of distribution (V). The estimated pharmacokinetic parameters were the absorption rate constant (k a) = 0.731 h(-1), V = 71.4 L and CL = 8.47 L·h(-1). CONCLUSION: The pharmacokinetics of oral OTX015 in patients with haematologic malignancies can be described with a one-compartment model. Population pharmacokinetic modelling of OTX015 plasma concentrations showed that LBM influences V and CL. These findings do not suggest the need for dose adjustment.


Assuntos
Acetanilidas/farmacocinética , Antineoplásicos/farmacocinética , Neoplasias Hematológicas/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Modelos Biológicos , Acetanilidas/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/sangue , Proteínas de Ciclo Celular , Feminino , Compostos Heterocíclicos com 3 Anéis/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Adulto Jovem
13.
Oncotarget ; 7(48): 79637-79653, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27793034

RESUMO

Anaplastic large cell lymphomas (ALCL) represent a peripheral T-cell lymphoma subgroup, stratified based on the presence or absence of anaplastic lymphoma kinase (ALK) chimeras. Although ALK-positive ALCLs have a more favorable outcome than ALK-negative ALCL, refractory and/or relapsed forms are common and novel treatments are needed. Here we investigated the therapeutic potential of a novel bromodomain inhibitor, OTX015/MK-8628 in ALK-positive ALCLs.The effects of OTX015 on a panel of ALK+ ALCL cell lines was evaluated in terms of proliferation, cell cycle and downstream signaling, including gene expression profiling analyses. Synergy was tested with combination targeted therapies.Bromodomain inhibition with OTX015 led primarily to ALCL cell cycle arrest in a dose-dependent manner, along with downregulation of MYC and its downstream regulated genes. MYC overexpression did not compensate this OTX015-mediated phenotype. Transcriptomic analysis of OTX015-treated ALCL cells identified a gene signature common to various hematologic malignancies treated with bromodomain inhibitors, notably large cell lymphoma. OTX015-modulated genes included transcription factors (E2F2, NFKBIZ, FOS, JUNB, ID1, HOXA5 and HOXC6), members of multiple signaling pathways (ITK, PRKCH, and MKNK2), and histones (clusters 1-3). Combination of OTX015 with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib led to cell cycle arrest then cell death, and combination with suboptimal doses of the ALK inhibitor CEP28122 caused cell cycle arrest. When OTX015 was associated with GANT61, a selective GLI1/2 inhibitor, C1156Y-resistant ALK ALCL growth was impaired.These findings support OTX015 clinical trials in refractory ALCL in combination with inhibitors of interleukin-2-inducible kinase or SHH/GLI1.


Assuntos
Acetanilidas/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Concentração Inibidora 50 , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcriptoma
14.
Oncotarget ; 7(51): 84675-84687, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27835869

RESUMO

Inhibitors targeting epigenetic control points of oncogenes offer a potential mean of blocking tumor progression in small cell and non-small cell lung carcinomas (SCLC, NSCLC). OTX015 (MK-8628) is a BET inhibitor selectively blocking BRD2/3/4. OTX015 was evaluated in a panel of NSCLC or SCLC models harboring different oncogenic mutations. Cell proliferation inhibition and cell cycle arrest were seen in sensitive NSCLC cells. MYC and MYCN were downregulated at both the mRNA and protein levels. In addition, OTX015-treatment significantly downregulated various stemness cell markers, including NANOG, Musashi-1, CD113 and EpCAM in H3122-tumors in vivo. Conversely, in SCLC models, weak antitumor activity was observed with OTX015, both in vitro and in vivo. No predictive biomarkers of OTX015 activity were identified in a large panel of candidate genes known to be affected by BET inhibition. In NSCLC models, OTX015 was equally active in both EML4-ALK positive and negative cell lines, whereas in SCLC models the presence of functional RB1 protein, which controls cell progression at G1, may be related to the final biological outcome of OTX015. Gene expression profiling in NSCLC and SCLC cell lines showed that OTX015 affects important genes and pathways with a very high overlapping between both sensitive and resistant cell lines. These data support the rationale for the OTX015 Phase Ib (NCT02259114) in solid tumors, where NSCLC patients with rearranged ALK gene or KRAS-positive mutations are currently being treated.


Assuntos
Acetanilidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Quinase do Linfoma Anaplásico , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Mutação/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Clin Cancer Res ; 22(10): 2470-81, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631615

RESUMO

PURPOSE: Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. EXPERIMENTAL DESIGN: The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. RESULTS: OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. CONCLUSIONS: We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR.


Assuntos
Antineoplásicos/uso terapêutico , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Acetanilidas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Camundongos , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
16.
Clin Cancer Res ; 10(22): 7566-74, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15569987

RESUMO

PURPOSE: Irofulven (6-hydroxymethylacylfulvene) is a novel agent, derived from illudin S, with potent apoptotic effects in preclinical models. In the Phase I trial evaluating intermittent weekly schedules, visual symptoms were dose limiting. The aim of this analysis was to better characterize the visual adverse events of irofulven and provide treatment guidelines. EXPERIMENTAL DESIGN: Clinical data from 277 patients entered in single-agent Phase I to II clinical trials who received irofulven on days 1 and 15 every 4 weeks; days 1, 8, and 15 every 4 weeks; or days 1 and 8 every 3 weeks were included in this multiparameter analysis. RESULTS: Overall, 74 patients (27%) experienced visual symptoms. The most frequently reported symptoms were flashing lights (12% of patients), blurred vision (9%), and photosensitivity (8%). Grade 3 toxicity was observed in 12 patients (4%). The incidence and severity of visual events were dose dependent, with no grade 3 visual events occurring at doses < or =0.50 mg/kg and grade 1 to 2 events in only 12% and 8% of patients, at doses of < or =0.50 mg/kg and < or =20 mg/m2, respectively. Grade 1 to 2 toxicity was reversible in most patients. Abnormal electroretinogram and abnormal visual fields were noted after irofulven treatment in 24 of 39 patients (62%) and 15 of 26 patients (58%), respectively. All but 1 patient who had electroretinogram assessment received doses >0.50 mg/kg. Clinical examination and visual field assessment were found to be better correlated with symptoms and appear to be more appropriate for surveillance of irofulven retinal symptoms than electroretinograms. CONCLUSIONS: On the basis of retained antitumor activity and reversibility of grade 1 and 2 visual symptoms at lower doses, it appears that an irofulven dose of < or =0.50 mg/kg or < or =20 mg/m2, not to exceed 50 mg in a single dose, given as a 30-minute infusion on days 1 and 8 every 3 weeks or days 1 and 15 every 4 weeks minimizes the frequency and severity of visual symptoms.


Assuntos
Sesquiterpenos/uso terapêutico , Visão Ocular/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Tempo
17.
Clin Cancer Res ; 10(10): 3377-85, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15161692

RESUMO

PURPOSE: We performed a Phase I and pharmacokinetic study to determine the maximum tolerated dose of irofulven (6-hydroxymethylacylfulvene; MGI-114, MGI PHARMA, Inc.), administered in intermittent weekly schedules in patients with advanced solid tumors. EXPERIMENTAL DESIGN: Three schedules were tested: A, days 1, 8, and 15 every 4 weeks; B, days 1 and 8 every 3 weeks; C, days 1 and 15 every 4 weeks. Drugs were administered as 5- and 30-min (schedules B and C) infusions. Dose levels of 10, 12, and 14 mg/m(2)/week were explored. RESULTS: Ninety-nine patients received 256 cycles. Fifteen of 74 patients evaluable for maximum tolerated dose experienced 16 dose-limiting toxicities (5 of 17 patients on schedule A, 2 of 25 on schedule B, and 8 of 32 on schedule C), principally treatment delay for thrombocytopenia. Schedule A was considered unsuitable because of frequent thrombocytopenia and treatment discontinuations. Twenty-three percent of the overall population (22 patients with grade 1-2, and 1 patient with grade 3), including 37% of patients on dose level 3, experienced unexpected dose-limiting visual toxicity, which included color perception and visual field alterations linked to retinal cone cell toxicity; the visual toxicity had an early onset, was mostly reversible, and was related to higher dose per infusion. Safety profiles were similar for 5- and 30-min infusions. The relationships between dose and area under the plasma concentration-time curve and maximum plasma concentration were linear for both 5- and 30-min infusions in the 78 patients evaluated for pharmacokinetics. The area under the plasma concentration-time curve and clearance were comparable between infusion durations. Responses included one complete (ovarian), one partial (renal), and seven disease stabilizations lasting >4 months. CONCLUSIONS: We recommend doses of 18 mg/m(2)/infusion for schedule B and 24 mg/m(2)/infusion for schedule C, limited to 0.55 mg/kg and a total dose of 50 mg/infusion, administered over 30-min.


Assuntos
Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Adulto , Idoso , Antineoplásicos/farmacocinética , Estudos de Coortes , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Sesquiterpenos/farmacocinética , Fatores de Tempo
18.
Mol Cancer Ther ; 1(3): 227-35, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12467217

RESUMO

Oxaliplatin, a diaminocyclohexane-containing platinum, has a spectrum of activity and mechanisms of action and resistance that appear to be different from those of other platinum-containing compounds, notably cisplatin. The first part of this review describes the differences between oxaliplatin and cisplatin in terms of their spectrum of activity and adduct formation and then goes on to discuss molecular and cellular experimental data that potentially explain them. Particular emphasis is placed on the differential role of DNA repair mechanisms. In addition, the anticancer effects of oxaliplatin are optimized when it is administered in combination with other anticancer agents, such as 5-fluorouracil, gemcitabine, cisplatin, or carboplatin; topoisomerase I inhibitors; and taxanes. In vitro and preclinical combination data that could optimize oxaliplatin-based chemotherapy are also reviewed.


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Animais , Biotransformação , Adutos de DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Oxaliplatina
19.
Biochimie ; 108: 101-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446656

RESUMO

Degradation of extracellular matrix components is a key step in tumor progression, facilitating invasion, angiogenesis, and metastasis. The lysosomal cysteine protease cathepsin S (Cat-S) is a prominent player in this process. We evaluated the antitumor activity of Fsn0503h, the first Cat-S-antagonistic humanized monoclonal antibody, in a panel of cancer cell lines and in human colon carcinoma xenografts. Cat-S was expressed in 11 out of 36 solid tumor-derived cell lines. Fsn0503h significantly reduced the invasive capacity of all Cat-S-expressing cell lines in vitro. This was confirmed by the Cat-S small-molecule inhibitor Z-FL-COCHO, validating the importance of this protease in tumor cell invasiveness. Interestingly, Fsn0503h displayed antiproliferative effects in Cat-S positive and some Cat-S-negative cell lines. We provide the first demonstration of in vivo activity of Fsn0503h against a colorectal tumor xenograft model, with a 10 mg/kg three times a week intravenous schedule being optimal. In conclusion, Fsn0503h not only inhibited the invasiveness of cancer cells in vitro, but also exerted antitumor effects both in vitro and in vivo. These findings validate Cat-S as a therapeutic target, and support the development of Fsn0503h for the therapy of solid tumors.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Catepsinas/antagonistas & inibidores , Animais , Catepsinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Cancer Res ; 21(7): 1628-38, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25623213

RESUMO

PURPOSE: In cancer cells, the epigenome is often deregulated, and inhibition of the bromodomain and extra-terminal (BET) family of bromodomain-containing proteins is a novel epigenetic therapeutic approach. Preliminary results of an ongoing phase I trial have reported promising activity and tolerability with the new BET bromodomain inhibitor OTX015. EXPERIMENTAL DESIGN: We assessed the preclinical activity of OTX015 as single agent and in combination in mature B-cell lymphoma models and performed in vitro and in vivo experiments to identify the mechanism of action and the genetic features associated with sensitivity to the compound. RESULTS: OTX015 showed antiproliferative activity in a large panel of cell lines derived from mature B-cell lymphoid tumors with median IC50 of 240 nmol/L, without significant differences among the different histotypes. In vitro and in vivo experiments showed that OTX015 targeted NFKB/TLR/JAK/STAT signaling pathways, MYC- and E2F1-regulated genes, cell-cycle regulation, and chromatin structure. OTX015 presented in vitro synergism with several anticancer agents, especially with mTOR and BTK inhibitors. Gene expression signatures associated with different degrees of sensitivity to OTX015 were identified. Although OTX015 was mostly cytostatic, the compound induced apoptosis in a genetically defined subgroup of cells, derived from activated B-cell-like diffuse large B-cell lymphoma, bearing wtTP53, mutations in MYD88, and CD79B or CARD11. CONCLUSIONS: Together with the data coming from the ongoing phase I study, the in vitro and in vivo data presented here provide the basis for further clinical investigation of OTX015 as single agent and in combination therapies.


Assuntos
Acetanilidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linfoma de Células B/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Animais , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Sinergismo Farmacológico , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA