Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gastroenterology ; 165(5): 1180-1196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507073

RESUMO

BACKGROUND & AIMS: Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding its pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full-thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single-cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. METHODS: We performed scRNAseq of 13 fresh full-thickness CD resections containing noninvolved, inflamed nonstrictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next-generation sequencing, proteomics, and animal models. RESULTS: Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and up-regulated, and its profibrotic function was validated using NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and knock-out and antibody-mediated CDH11 blockade in experimental colitis. CONCLUSIONS: A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and open potential therapeutic developments. This work has been posted as a preprint on Biorxiv under doi: 10.1101/2023.04.03.534781.


Assuntos
Colite , Doença de Crohn , Animais , Doença de Crohn/genética , Doença de Crohn/patologia , Constrição Patológica , Intestinos/patologia , Colite/patologia , Fibroblastos/patologia
2.
Acta Derm Venereol ; 94(5): 539-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24889972

RESUMO

The number of melanomas removed from Australians is increasing. Despite this, it has been reported that the incidence of melanoma is decreasing in the young Australian population. However, the denominator for these estimates includes individuals at low risk of melanoma, and the proportion of such individuals has changed over recent decades due to immigration. In this study, the incidence was calculated for the susceptible young population. Data from the Australian Bureau of Statistics were analysed to determine the number of people younger than 30 years at low risk of developing melanoma in 1982 and 2009. Low risk people were defined as those born in Asia, the Pacific Islands, The Middle East, or Sub-Saharan Africa, or had parents born in these regions. There was a significant increase in the number of young Australians at low risk for melanoma. If these people are not included when calculating the crude rate of melanoma, the rate increased from 5.9 per 100,000 in 1982 to 6.3 in 2009. If the estimated number of young Maoris and young Aborigines is excluded from the susceptible population, the crude rate increased from 6.0 per 100,000 in 1982 to 6.8 in 2009. This is the first calculation of the rate of melanoma for the susceptible young Australian population.


Assuntos
Melanoma/epidemiologia , Neoplasias Cutâneas/epidemiologia , Adulto , Austrália/epidemiologia , Censos , Suscetibilidade a Doenças , Emigrantes e Imigrantes , Humanos , Incidência , Grupos Raciais
3.
medRxiv ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39281760

RESUMO

Background and aims: Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods: Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results: Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions: Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. HIGHLIGHTS: HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.

4.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066202

RESUMO

Background: Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding it's pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. Methods: We performed scRNAseq of 13 fresh full thickness CD resections containing non-involved, inflamed non-strictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next generation sequencing, proteomics and animal models. Results: Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and upregulated, and its pro-fibrotic function was validated by NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and two animal models of experimental colitis. Conclusion: A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and opens potential therapeutic developments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA