Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Imaging ; 20(1): 123, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228567

RESUMO

BACKGROUND: The revised 2016 WHO-Classification of CNS-tumours now integrates molecular information of glial brain tumours for accurate diagnosis as well as for the development of targeted therapies. In this prospective study, our aim is to investigate the predictive value of MR-spectroscopy in order to establish a solid preoperative molecular stratification algorithm of these tumours. We will process a 1H MR-spectroscopy sequence within a radiomics analytics pipeline. METHODS: Patients treated at our institution with WHO-Grade II, III and IV gliomas will receive preoperative anatomical (T2- and T1-weighted imaging with and without contrast enhancement) and proton MR spectroscopy (MRS) by using chemical shift imaging (MRS) (5 × 5 × 15 mm3 voxel size). Tumour regions will be segmented and co-registered to corresponding spectroscopic voxels. Raw signals will be processed by a deep-learning approach for identifying patterns in metabolic data that provides information with respect to the histological diagnosis as well patient characteristics obtained and genomic data such as target sequencing and transcriptional data. DISCUSSION: By imaging the metabolic profile of a glioma using a customized chemical shift 1H MR spectroscopy sequence and by processing the metabolic profiles with a machine learning tool we intend to non-invasively uncover the genetic signature of gliomas. This work-up will support surgical and oncological decisions to improve personalized tumour treatment. TRIAL REGISTRATION: This study was initially registered under another name and was later retrospectively registered under the current name at the German Clinical Trials Register (DRKS) under DRKS00019855.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Algoritmos , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Redes Neurais de Computação , Estudos Prospectivos , Análise de Sequência de RNA
2.
Cancers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067701

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) delivers information about the non-invasive metabolic landscape of brain pathologies. 1H-MRS is used in clinical setting in addition to MRI for diagnostic, prognostic and treatment response assessments, but the use of this radiological tool is not entirely widespread. The importance of developing automated analysis tools for 1H-MRS lies in the possibility of a straightforward application and simplified interpretation of metabolic and genetic data that allow for incorporation into the daily practice of a broad audience. Here, we report a prospective clinical imaging trial (DRKS00019855) which aimed to develop a novel MR-spectroscopy-based algorithm for in-depth characterization of brain lesions and prediction of molecular traits. Dimensional reduction of metabolic profiles demonstrated distinct patterns throughout pathologies. We combined a deep autoencoder and multi-layer linear discriminant models for voxel-wise prediction of the molecular profile based on MRS imaging. Molecular subtypes were predicted by an overall accuracy of 91.2% using a classifier score. Our study indicates a first step into combining the metabolic and molecular traits of lesions for advancing the pre-operative diagnostic workup of brain tumors and improve personalized tumor treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA