Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 23(1): 26, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504262

RESUMO

INTRODUCTION: Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM: The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD: A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT: Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS: Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/epidemiologia , Testes de Sensibilidade Microbiana , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/isolamento & purificação
2.
Future Microbiol ; 19(16): 1419-1437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39269849

RESUMO

Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.


Enzymes are important substances made by the cells of plants and animals. They are catalysts, or substances that control how quickly chemical reactions occur. These reactions are the processes that keep all plants and animals functioning. They are present in almost every natural organism, from microorganisms to plants and mammals. But plants and animals produce small amounts of enzymes unsuitable for industrial applications. The use of microbial enzymes in industry offers many advantages over plant and animal enzymes. People use enzymes in industry and medicine. Enzymes help to heal cuts and to diagnose certain diseases. They are also an important part of the process called fermentation. In industries, they are applied in the textile, starch, bakery, and detergent industries. This helps turn milk into cheese and juice into wine, and it makes bread rise before it is baked.


Assuntos
Bactérias , Enzimas , Bactérias/enzimologia , Bactérias/genética , Enzimas/metabolismo , Enzimas/genética , Humanos , Animais , Biotecnologia
3.
Antimicrob Resist Infect Control ; 13(1): 24, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419112

RESUMO

INTRODUCTION: The development of colistin resistance in Acinetobacter baumannii during treatment has been identified in certain patients, often leading to prolonged or recurrent infections. As colistin, is the last line of therapy for A. baumannii infections that are resistant to almost all other antibiotics, colistin-resistant A. baumannii strains currently represent a significant public health threat, particularly in healthcare settings where there is significant selective pressure. AIM: The aim of this study was to comprehensively determine the prevalence of colistin resistance in A. baumannii from clinical samples. Regional differences in these rates were also investigated using subgroup analyses. METHOD: The comprehensive search was conducted using "Acinetobacter baumannii", "Colistin resistant" and all relevant keywords. A systematic literature search was performed after searching in PubMed, Embase, Web of Science, and Scopus databases up to April 25, 2023. Statistical analysis was performed using Stata software version 17 and sources of heterogeneity were evaluated using I2. The potential for publication bias was explored using Egger's tests. A total of 30,307 articles were retrieved. After a thorough evaluation, 734 studies were finally eligible for inclusion in the present systematic review and meta-analysis. RESULT: According to the results, the prevalence of resistance to colistin among A. baumannii isolates was 4% (95% CI 3-5%), which has increased significantly from 2% before 2011 to 5% after 2012. South America had the highest resistance rate to this antibiotic. The broth microdilution method had the highest level of resistance, while the agar dilution showed the lowest level. CONCLUSIONS: This meta-analysis found a low prevalence of colistin resistance among A. baumannii isolates responsible for infections worldwide from 2000 to 2023. However, there is a high prevalence of colistin-resistant isolates in certain countries. This implies an urgent public health threat, as colistin is one of the last antibiotics available for the treatment of infections caused by XDR strains of A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Colistina , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacos , Colistina/farmacologia , Humanos , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Prevalência , Testes de Sensibilidade Microbiana
4.
Future Microbiol ; : 1-18, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445447

RESUMO

Bladder cancer (BCa) remains a significant global health challenge, with increasing interest in the role of the bladder microbiome in its pathogenesis, progression and treatment outcomes. The complex relationship between bladder cancer and the microbiome, as well as the potential impact of probiotics on treatment effectiveness, is currently under investigation. Research suggests that the microbiota may influence BCa recurrence prevention and enhance the efficacy of the Bacillus Calmette-Guérin (BCG) vaccine. Recent studies reveal differences in the bladder microbiome between individuals without bladder cancer and those with the disease. In the healthy bladder, Streptococcus and Lactobacillus are consistently identified as the most prevalent genera. However, in men, the predominant bacterial genera are Staphylococcus, Corynebacterium and Streptococcus, while in women with bladder cancer, Gardnerella and Lactobacillus are dominant. Probiotics, particularly Lactobacillus spp., can exhibit anti-tumor properties by competing with pathogenic strains involved in carcinogenesis or by producing regulatory substances. They regulate cancer signaling, induce apoptosis, inhibit mutagenic activity, downregulate oncogene expression, induce autophagy, inhibit kinases, reactivate tumor suppressors and prevent metastasis. These mechanisms have shown promising results in both preclinical and some clinical studies.


Bladder cancer is the tenth most common cancer globally. It is affected by factors such as age, gender, smoking habits, genetic predispositions, exposure to occupational chemicals, contaminated drinking water and a history of infectious diseases. The microbiome is the collection of all microbes that naturally live inside us. Probiotics are live microbes that stimulate the growth of a healthy microbiome and are widely used to address various health issues. We discuss their potential anti-tumor properties.

5.
Front Microbiol ; 15: 1477836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39473844

RESUMO

Objective: The emergence of resistance to colistin, the last resort for treating severe infections caused by Pseudomonas aeruginosa, poses a significant threat to public health. This meta-analysis aimed to investigate the prevalence of colistin resistance in clinical isolates of P. aeruginosa. Method: A comprehensive search of MEDLINE (PubMed), Web of Science, and Scopus databases was conducted to identify relevant articles published until December 2023. Subsequently, a meta-analysis was performed using Stata software to examine the pooled prevalence of colistin resistance and to conduct subgroup analyses. Results: A total of 619 studies were included in the meta-analysis, revealing a global prevalence of colistin resistance of 1% among all P. aeruginosa isolates. Furthermore, cystic fibrosis patients exhibited the highest resistance to colistin, with a prevalence of 7% among the examined diseases. Conclusion: The increase in colistin resistance in P. aeruginosa in recent years from 2% (in the period of 2006-2010) to 5% (in the period of 2020-2023) underscores the need for implementing infection prevention programs, using appropriate treatment regimens, and disseminating comprehensive information on antimicrobial resistance patterns. These measures are crucial for addressing this growing public health concern.

6.
Heliyon ; 9(12): e22602, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089982

RESUMO

Background: Colorectal cancer (CRC) is one of the primary causes of cancer-associated deaths worldwide, and growing evidence shows that alteration in the gut microbiota may be a contributing factor to the development and progression of the disease. This study investigates the correlation between CRC and specific intestinal microbiota abundance, including Firmicutes, Lactobacillus, Enterococcus, Clostridium, and Bifidobacterium. Material and methods: In this study, 100 CRC samples and adjacent normal tissues were obtained from Iranian patients. Afterward, we assessed the abundance of the mentioned bacteria in matched tumor and normal tissue samples from 100 CRC patients, by TaqMan quantitative real-time polymerase chain reaction (qPCR). Results: Most of the patients (55 %) had grade II cancer (moderately differentiated), followed by grade III (poorly Differentiated) in 19 %, and the distribution of the tumor location was 65 % in the colon and 35 % in the rectum. Our research showed a substantial difference in the relative abundance of specific bacteria in tumors and healthy tissues. To this end, four genera of bacteria, including Bifidobacterium, Lactobacillus, Clostridium, and Firmicutes, exhibited statistically significant reductions in tumor tissues compared to adjacent normal tissue (p < 0.05). Conversely, Enterococcus demonstrated a statistically significant increase in tumor tissue samples (p < 0.05). Noteworthy, statistical analysis revealed a significant relationship between Enterococcus and prior cancer (p < 0.05). Conclusions: These findings provide significant insight into the complex association between the gut microbiota and CRC and may pave the way for future research on novel screening methods, preventive measures, and therapeutic strategies targeting the gut microbiota in CRC patients.

7.
Infect Agent Cancer ; 18(1): 48, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644520

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers all over the world, and dysbiosis in the gut microbiota may play a role in colorectal carcinogenesis. Bacteroides fragilis can lead to tumorigenesis by changing signaling pathways, including the WNT/ß-catenin pathway. Therefore, in the present study, we investigated the correlation between the enterotoxigenic B. fragilis amount and the expression of signaling pathway genes involved in CRC. MATERIALS AND METHODS: B. fragilis was determined in 30 tumors and adjacent healthy tissues by the qPCR method. Next, the relationship between enterotoxigenic B. fragilis and the expression of signaling pathway genes, including CCND1, TP53, BCL2, BAX, WNT, TCF, AXIN, APC, and CTNNB1 was investigated. Additionally, possible correlations between clinicopathological features of the tumor samples and the abundance of B. fragilis were analyzed. RESULTS: The results showed that B. fragilis was detected in 100% of tumor samples and 86% of healthy tissues. Additionally, enterotoxigenic B. fragilis colonized 47% of all samples, and bft-1 toxin was the most frequently found isotype among the samples. The analysis showed that the high level of B. fragilis has a significant relationship with the high expression of AXIN, CTNNB1, and BCL2 genes. On the other hand, our results did not show any possible correlation between this bacterium and the clinicopathological features of the tumor sample. CONCLUSION: B. fragilis had a higher abundance in the tumor samples than in healthy tissues, and this bacterium may lead to CRC by making changes in cellular signaling pathways and genes. Therefore, to better understand the physiological effects of B. fragilis on the inflammatory response and CRC, future research should focus on dissecting the molecular mechanisms by which this bacterium regulates cellular signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA