Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 93(1): 9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26019261

RESUMO

Testosterone production by Leydig cells is a tightly regulated process requiring synchronized expression of several steroidogenic genes by numerous transcription factors. Myocyte enhancer factor 2 (MEF2) are transcription factors recently identified in somatic cells of the male gonad. In other tissues, MEF2 factors are essential regulators of organogenesis and cell differentiation. So far in the testis, MEF2 factors were found to regulate Leydig cell steroidogenesis by controlling Nr4a1 and Star gene expression. To expand our understanding of the role of MEF2 in Leydig cells, we performed microarray analyses of MEF2-depleted MA-10 Leydig cells, and the results were analyzed using Partek and Ingenuity Pathway Analysis software. Several genes were differentially expressed in MEF2-depleted Leydig cells, and 16 were validated by quantitative RT-PCR. A large number of these genes are known to be involved in fertility, gonad morphology, and steroidogenesis. These include Ahr, Bmal1, Cyp1b1, Hsd3b1, Hsd17b7, Map2k1, Nr0b2, Pde8a, Por, Smad4, Star, and Tsc22d3, which were all downregulated in the absence of MEF2. In silico analyses revealed the presence of MEF2-binding sites within the first 2 kb upstream of the transcription start site of the Por, Bmal1, and Nr0b2 promoters, suggesting direct regulation by MEF2. Using transient transfections in MA-10 Leydig cells, small interfering RNA knockdown, and a MEF2-Engrailed dominant negative, we found that MEF2 activates the Por, Bmal1, and Nr0b2 promoters and that this requires an intact MEF2 element. Our results identify novel target genes for MEF2 and define MEF2 as an important regulator of Leydig cell function and male reproduction.


Assuntos
Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição MEF2/metabolismo , Regiões Promotoras Genéticas , Testosterona/metabolismo , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Fosfoproteínas/metabolismo , Transcrição Gênica
2.
Biol Reprod ; 90(2): 25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24352556

RESUMO

Transcription factor GATA4 is required for the development and function of the mammalian gonads. We first reported that the GATA4 gene in both human and rodents is expressed as two major alternative transcripts that differ solely in their first untranslated exon (exon 1a vs. exon 1b). We had also showed by quantitative PCR that in mouse tissues, both Gata4 exon 1a- and 1b-containing transcripts are present in all sites that are normally positive for GATA4 protein. In adult tissues, exon 1a-containing transcripts generally predominate. A notable exception, however, is the testis where the Gata4 exon 1a and 1b transcripts exhibit a similar level of expression. We now confirm by in situ hybridization analysis that each transcript is also strongly expressed during gonad differentiation in both sexes in the rat. To gain further insights into how Gata4 gene expression is controlled, we characterized the mouse Gata4 promoter sequence located upstream of exon 1b. In vitro studies revealed that the Gata4 1b promoter is less active than the 1a promoter in several gonadal cell lines tested. Whereas we have previously shown that endogenous Gata4 transcription driven by the 1a promoter is dependent on a proximally located Ebox motif, we now show using complementary in vitro and in vivo approaches that Gata4 promoter 1b-directed expression is regulated by GATA4 itself. Thus, Gata4 transcription in the gonads and other tissues is ensured by distinct promoters that are regulated differentially and independently.


Assuntos
Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica , Gônadas/metabolismo , Regiões Promotoras Genéticas , Animais , Células Cultivadas , Chlorocebus aethiops , Feminino , Fator de Transcrição GATA4/metabolismo , Células HeLa , Homeostase/genética , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
3.
J Diabetes Res ; 2019: 2813489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467926

RESUMO

While the autoimmune character of T1D (type 1 diabetes) is being challenged, it is currently recognized that inflammation plays a key role in its development. We hypothesized that glucotoxicity could contribute to ß-cell mass destruction through participation in islet inflammation. We evaluated the potential of empagliflozin (EMPA) and GABA (gamma-aminobutyric acid) to protect ß-cell mass against glucotoxicity and to increase ß-cell mass after diagnosis of T1D. Empagliflozin is a SGLT2 (sodium-dependent glucose cotransporter) inhibitor which thereby blocks glucose recapture by the kidney and promotes glucose excretion in urine. GABA is an inhibitory neurotransmitter, which stimulates α-to-ß cell transdifferentiation. In streptozotocin-treated mice, empagliflozin and/or GABA were delivered for a period of five days or three weeks. As compared to untreated T1D mice, EMPA-treated T1D mice had decreased FFA (free fatty acid) levels and improved glucose homeostasis. EMPA-treated T1D mice had higher islet density, with preserved architecture, compared to T1D mice, and EMPA-treated T1D mice also differed from T1D mice by the total absence of immune cell infiltration within islets. Islets from EMPA-treated mice were also less subjected to ER (endoplasmic reticulum) stress and inflammation, as shown by qPCR analysis. Glucose homeostasis parameters and islet area/pancreas area ratio improved, as compared to diabetic controls, when T1D mice were treated for three weeks with GABA and EMPA. T1D EMPA+GABA mice had higher glucagon levels than T1D mice, without modifications of glucagon area/islet area ratios. In conclusion, empagliflozin and GABA, used in monotherapy in streptozotocin-induced diabetic mice, have positive effects on ß-cell mass preservation or proliferation through an indirect effect on islet cell inflammation and ER stress. Further research is mandatory to evaluate whether empagliflozin and GABA may be a potential therapeutic target for the protection of ß-cell mass after new-onset T1D.


Assuntos
Compostos Benzidrílicos/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucosídeos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Animais , Compostos Benzidrílicos/administração & dosagem , Glicemia/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Esquema de Medicação , Quimioterapia Combinada , Intervenção Médica Precoce , Teste de Tolerância a Glucose , Glucosídeos/administração & dosagem , Injeções Intraperitoneais , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos , Estreptozocina , Fatores de Tempo , Ácido gama-Aminobutírico/administração & dosagem
4.
Endocrinology ; 156(7): 2693-703, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25860031

RESUMO

In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.


Assuntos
AMP Cíclico/metabolismo , Fator de Transcrição GATA4/metabolismo , Expressão Gênica/genética , Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição MEF2/genética , Fosfoproteínas/genética , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Colforsina/farmacologia , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hormônios Esteroides Gonadais/biossíntese , Células Intersticiais do Testículo/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
5.
Mol Endocrinol ; 28(6): 886-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694307

RESUMO

Leydig cell steroidogenesis is controlled by the pituitary gonadotropin LH that activates several signaling pathways, including the Ca(2+)/calmodulin kinase I (CAMKI) pathway. In other tissues, CAMKI regulates the activity of the myocyte enhancer factor 2 (MEF2) transcription factors. MEF2 factors are essential regulators of cell differentiation and organogenesis in numerous tissues but their expression and role in the mammalian gonad had not been explored. Here we show that MEF2 factors are expressed in a sexually dimorphic pattern in the mouse gonad. MEF2 factors are present in the testis throughout development and into adulthood but absent from the ovary. In the testis, MEF2 was localized mainly in the nucleus of both somatic lineages, the supporting Sertoli cells and the steroidogenic Leydig cells. In Leydig cells, MEF2 was found to activate the expression of Nr4a1, a nuclear receptor important for hormone-induced steroidogenesis. In these cells MEF2 also cooperates with forskolin and CAMKI to enhance Nr4a1 promoter activity via two MEF2 elements (-318 and -284 bp). EMSA confirmed direct binding of MEF2 to these elements whereas chromatin immunoprecipitation revealed that MEF2 recruitment to the proximal Nr4a1 promoter was increased following hormonal stimulation. Modulation of endogenous MEF2 protein level (small interfering RNA-mediated knockdown) or MEF2 activity (MEF2-Engrailed active dominant negative) led to a significant decrease in Nr4a1 mRNA levels in Leydig cells. All together, our results identify MEF2 as a novel testis-specific transcription factor, supporting a role for this factor in male sex differentiation and function. MEF2 was also positioned upstream of NR4A1 in a regulatory cascade controlling Leydig cell gene expression.


Assuntos
Regulação da Expressão Gênica , Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição MEF2/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Animais , Sequência de Bases , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Sequência Consenso , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Especificidade de Órgãos , Ovário/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA