Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 6917-6928, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439386

RESUMO

Augmented reality head-up display (AR-HUD) using diffractive waveguide is a challenging research field. It can drastically reduce the system volume compared with AR-HUD based on freeform mirror. However, one of the remaining challenges that affects the performance of the diffractive waveguide is to expand the eye-box while maintaining the illuminance uniformity. In this paper, a one-dimensional pupil expansion diffractive optical waveguide system for AR-HUD is presented. The optimization of grating parameters is based on scalar diffraction theory and rigorous coupled wave analysis (RCWA). Then, the illuminance uniformity is optimized through non-sequential ray tracing. We simulate and construct a waveguide-based AR-HUD. The presented AR-HUD realized an exit pupil size of 80 mm × 15 mm and a field of view of 10° × 5° at the wavelength of 532 nm.

2.
Opt Express ; 29(8): 11702-11711, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984946

RESUMO

We demonstrate that excess intensity noise of soliton fiber lasers in the average power regime exceeding 10 mW can be reduced by increasing the intracavity dispersion and reducing the pump power. Based on this strategy, we present a polarization-maintaining picosecond Yb fiber laser mode-locked by a nonlinear amplifying loop mirror whose excess noise is equal to the shot noise at an optical power of >10 mW.

3.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512664

RESUMO

Micro-LED display technology has been considered a promising candidate for near-eye display applications owing to its superior performance, such as having high brightness, high resolution, and high contrast. However, the realization of polarized and high-efficiency light extraction from Micro-LED arrays is still a significant problem to be addressed. Recently, by exploiting the capability of metasurfaces in wavefront modulation, researchers have achieved many excellent results by integrating metasurface structures with Micro-LEDs, including improving the light extraction efficiency, controlling the emission angle to achieve directional emission, and obtaining polarized Micro-LEDs. In this paper, recent progressions on Micro-LEDs integrated with metasurface structures are reviewed in the above three aspects, and the similar applications of metasurface structures in organic LEDs, quantum dot LEDs, and perovskite LEDs are also summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA