Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(12): e2307042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946682

RESUMO

Water stability is a crucial issue always addressed for commercial practical application of perovskite quantum dots (QDs). Recent advances in ligand engineering for in situ synthesis of water-stable perovskite QDs have attracted growing interest. However, the exact mechanism remains unclear. Here, the function of 4-bromobutyric acid (BBA) and oleylamine (OLA) is systematically studied in water-stable CsPbX3 (X = Br and I) QDs and confirms that the zwitterionic ligands generated in situ by BBA and OLA are anchored on the QDs surface, thus preventing water from penetrating into the QDs. Cs4PbBr6 intermediate crystal found in the crystal structure evolution process of CsPbX3 QD further reveals a complete crystallization process: PbX2 + CsX + Br- → Cs4PbBr6 crystals + X-→ CsPbX3 QDs + Br-. Furthermore, it is found that the solvent coordination of the precursor solution has a significant effect on the crystallinity of Cs4PbBr6 intermediate crystal, while the Rb+ doping can effectively passivate the surface defects of CsPbX3 QDs, thereby jointly achieving photoluminescence quantum yields (PLQY) of 94.6% for CsPbBr3 QDs (88.2% for CsPbI3 QDs). This work provides new insights and guiding ideas for the green synthesis of high-quality and water-stable perovskite QDs.

2.
Opt Lett ; 49(4): 1061-1064, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359253

RESUMO

We demonstrated an AlGaN-based multiple-quantum-well (MQW) deep ultraviolet (DUV) laser at 278 nm using a nanoporous (NP) n-AlGaN as the bottom cladding layer grown on the sapphire substrate. The laser has a very-low-threshold optically pumped power density of 79 kW/cm2 at room temperature and a transverse electric (TE)-polarization-dominant emission. The high optical confinement factor of 9.12% benefiting from the low refractive index of the nanoporous n-AlGaN is the key to enable a low-threshold lasing. The I-V electrical measurement demonstrates that an ohmic contact can be still achieved in the NP n-AlGaN with a larger but acceptable resistance, which indicates it is compatible with electrically driven laser devices. Our work provides insights into the design and fabrication of low-threshold lasers emitting in the DUV regime.

3.
Opt Express ; 30(12): 21822-21832, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224894

RESUMO

Motivated by the goals of fabricating highly reliable, high performance, and cost-efficient self-powered photodetector (PD) for numerous scientific research and civil fields, an organic-inorganic hybrid solar-blind ultraviolet (UV) PD based on PEDOT: PSS/exfoliated ß-Ga2O3 microwire heterojunction was fabricated by a flexible and cost-effective assembly method. Benefiting from the heterojunction constructed by the highly crystalline ß-Ga2O3 and the excellent hole transport layer PEDOT: PSS, the device presents a high responsivity of 39.8 mA/W at 250 nm and a sharp cut-off edge at 280 nm without any power supply. Additionally, the ultra-high normalized photo-to-dark current ratio (> 104 mW-1cm2) under reverse bias and the superior detectivity of 2.4×1012 Jones at zero bias demonstrate the excellent detection capabilities. Furthermore, the hybrid PD exhibits a rapid rise time (several milliseconds) and high rejection ratio (R250/R365: 5.8 × 103), which further highlights its good spectral selectivity for solar-blind UV. The prominent performance is mainly ascribed to the efficient separation of the photogenerated carriers by the large built-in electric field of the advanced heterojunction. This flexible assembly strategy for solar-blind UV PD combines the advantages of high efficiency, low cost and high performance, providing more potential for PD investigation and application in the future.

4.
Opt Lett ; 46(14): 3436-3439, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264232

RESUMO

The soliton crystal (SC) was recently discovered as an extraordinary Kerr soliton state with regularly distributed soliton pulses and enhanced comb line power spaced by multiples of the cavity free spectral ranges (FSRs), which will significantly extend the application potential of microcombs in optical clock, signal processing, and terahertz wave systems. However, the reported SC spectra are generally narrow. In this Letter, we demonstrate the generation of a breathing SC in an aluminum nitride (AlN) microresonator (FSR ∼374GHz), featuring a near-octave-spanning (1150-2200 nm) spectral range and a terahertz repetition rate of ∼1.87THz. The measured 60 fs short pulses and low intensity-noise characteristics confirm the high coherence of the breathing SC. Broadband microcombs with various repetition rates of ∼0.75, ∼1.12, and ∼1.5THz were also realized in different microresonators of the same size. The proposed scheme shows a reliable design strategy for broadband soliton generation with versatile dynamic control over the comb line spacing.

5.
Opt Lett ; 46(9): 2111-2114, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929448

RESUMO

Deep ultraviolet (DUV) LEDs have great potential in sterilization, water, air purification, and other fields. In this work, DUV LED wafers with different quantum well (QW) widths were grown by metal-organic chemical vapor deposition. It is found that the light output power (LOP) and peak wavelength of all chips are not only related to the QW thickness but also affected by warpage. For the first time, to the best of our knowledge, a positive correlation between the LOP and peak wavelength of DUV LED chips on the same wafer was observed, which is very important for improving the yield of DUV LEDs and reducing costs. Furthermore, the influence of QW thickness on the external quantum efficiency (EQE) of DUV LED has also been investigated. As the thickness of the QW increases, the exciton localization effect decreases and the quantum confinement Stark effect increases. Consequently, DUV LED wafers with a QW thickness of 2 nm have the highest EQE and yield. These findings not only help to improve the efficiency of DUV LEDs but also provide new insights for evaluating the performance of DUV LED wafers.

6.
Opt Lett ; 46(3): 540-543, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528404

RESUMO

Octave-spanning optical frequency combs (OFCs) are essential for various applications, such as precision metrology and astrophysical spectrometer calibration. In this Letter, we demonstrate, for the first time to our knowledge, the generation of octave-spanning Kerr frequency combs ranging from 1150 to 2400 nm in aluminum nitride (AlN) microring resonators, by pumping the TM00 modes at 250 mW on-chip power. By simply adjusting the pump detuning, we observe the transition and coexistence of Kerr OFC and stimulated Raman scattering. For the TE00 mode in the same device, a broadband Raman-assisted frequency comb is demonstrated by adjusting the pump power and tuning. These results indicate a crucial development for the fundamentals of nonlinear dynamics and comb applications in AlN.

7.
Opt Express ; 28(13): 19270-19280, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672207

RESUMO

Single-crystal aluminum nitride (AlN) possessing both strong Pockels and Kerr nonlinear optical effects as well as a very large band gap is a fascinating optical platform for integrated nonlinear optics. In this work, fully etched AlN-on-sapphire microresonators with a high-Q of 2.1 × 106 for the TE00 mode are firstly demonstrated with the standard photolithography technique. A near octave-spanning Kerr frequency comb ranging from 1100 to 2150 nm is generated at an on-chip power of 406 mW for the TM00 mode. Due to the high confinement, the TE10 mode also excites a Kerr comb from 1270 to 1850nm at 316 mW. In addition, frequency conversion to visible light is observed during the frequency comb generation. Our work will lead to a large-scale, low-cost, integrated nonlinear platform based on AlN.

8.
Opt Express ; 27(20): A1544-A1553, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684505

RESUMO

AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) still suffer from poor quantum efficiency and low optical power. In this work, we proposed a DUV LED structure that includes five unique AlxGa1-xN quantum barriers (QBs); Each QB has a linear-increment of Al composition by 0.03 along the growth direction, unlike those commonly used flat QBs in conventional LEDs. As a result, the electron and hole concentration in the active region was considerably increased, attributing to the success of the electron blocking effect and enhanced hole injection efficiency. Importantly, the optical power was remarkably improved by 65.83% at the injection current of 60 mA. After in-depth device optimization, we found that a relatively thinner graded QB layer could further boost the LED performance because of the increased carrier concentrations and enhanced electron and hole wave function overlap in the QW, triggering a much higher radiative recombination efficiency. Hence, the proposed graded QBs, which have a continuous increment of Al composition along the growth direction, provide us with an effective solution to boost light output power in the pursuit of high-performance DUV emitters.

9.
Opt Express ; 27(20): A1601-A1614, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684591

RESUMO

Optical polarization characteristics and light extraction behavior of deep-ultraviolet (DUV) light-emitting diode (LED) flip-chip with full-spatial omnidirectional reflector (FSODR) have been investigated. FSODR is fabricated to be simultaneously covered on the whole flip-chip, except the sapphire surface. It is found that the FSODR greatly enhance both transverse-electric (TE) and transverse-magnetic (TM) mode light extraction at every space angle, resulting in total enhancement of 73.1% and 79.8%, respectively. Moreover, the four individual ODR structures separated from FSODR, which are covered on the surface of n-AlGaN, the interface of p-GaN/p-AlGaN, the sidewall of mesa and the sidewall of n-AlGaN/AlN, respectively, show considerably different optical polarization characteristics and extraction behaviors between each other. The achievements of FSODR cannot be obtained by any separated ODR, and all of the individual ODRs can contribute to the FSODR. Especially, the synergy effect of TM extraction behavior obviously exists in FSODR. As a result, the light extraction efficiency (LEE) enhancement of FSODR is approximately 60% at a high current density of 140A/cm2. This study is significant for understanding and modulating the extraction behavior of polarized light to realize high efficiency AlGaN-based DUV LEDs.

10.
Opt Lett ; 44(8): 1944-1947, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985781

RESUMO

We report on the demonstration of a 386 nm light emission and detection dual-functioning device based on nonpolar a-plane n-ZnO/i-ZnO/p-Al0.1Ga0.9N heterojunction under both forward and reverse bias. The electroluminescence intensity under reverse bias is significantly stronger than that under forward bias, facilitated by carrier tunneling when the valence band of p-AlGaN aligns with the conduction band of i-ZnO under reverse bias. Also amid reverse bias, the photodetection was observed and applied in a duplex optical communication device. Optical polarization of the light emission is studied for potential polarization-sensitive device applications. The proposed device provides an important pathway for the multifunctional devices operating in a UV spectrum.

11.
Nanotechnology ; 30(43): 435202, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31304918

RESUMO

AlGaN-based deep ultraviolet (DUV) multiple-quantum-wells (MQWs) incorporating strain-modulated nanostructures are proposed, demonstrating enhanced degree of polarization (DOP) and improved light extraction efficiency (LEE). The influence of Al composition and bi-axial strains on the optical behaviors of the DUV-MQWs were carefully examined. Compared with planar DUV-MQWs, strain-modulated nanostructure patterned MQWs show three times higher photoluminescence and increased DOP from -0.43 to -0.16. Moreover, nanostructure patterned DUV-MQWs under compressive strains further illustrate higher DOP and LEE values than those under tensile strains due to more efficient diffraction of the guided modes of the transverse electric (TE) polarized light. Our work demonstrates, for the first time, that a combination of compressive in-plane strain and surface nanostructure show unambiguous advantages in facilitating TE mode emission, thus have great promises in the design and optimization of highly efficient polarized DUV optoelectronic devices.

12.
Opt Express ; 26(2): 680-686, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401950

RESUMO

In this work, combined analysis of internal strain effects on optical polarization and internal quantum efficiency (IQE) were conducted for the first time. Deep ultraviolet light extraction efficiency of AlGaN multiple quantum wells (MQWs) have been investigated by means of polarization-dependent photoluminescence (PD-PL) and temperature-dependent photoluminescence (TD-PL). With the increase of compressive internal strain applied to the MQWs by an underlying n-AlGaN layer, the degree of polarization (DOP) of the sample was improved from -0.26 to -0.06 leading to significant enhancement of light extraction efficiency (LEE) as the PL intensity increased by 29.2% even though the internal quantum efficiency declined by 7.7%. The results indicated that proper management of the internal compressive strain in AlGaN MQWs can facilitate the transverse electric (TE) mode and suppress the transverse magnetic (TM) mode which could effectively reduce the total internal reflection (TIR) and absorption. This work threw light upon the promising application of compressively strained MQWs to reduce the wave-guide effect and improve the LEE of deep ultraviolet light emitting diodes (DUV LEDs).

13.
Opt Lett ; 43(11): 2684-2687, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856393

RESUMO

The distinct ultraviolet (UV) light absorption of indium tin oxide (ITO) limits the performance of GaN-based near-UV light-emitting diodes (LEDs). Herein, we report an Al-doped ITO with enhanced UV transmittance and low sheet resistance as the transparent conductive electrode for GaN-based 395 nm flip-chip near-UV LEDs. The thickness dependence of optical and electrical properties of Al-doped ITO films is investigated. The optimal Al-doped ITO film exhibited a transmittance of 93.2% at 395 nm and an average sheet resistance of 30.1 Ω/sq. Meanwhile, at an injection current of 300 mA, the forward voltage decreased from 3.14 to 3.11 V, and the light output power increased by 13% for the 395 nm near-UV flip-chip LEDs with the optimal Al-doped ITO over those with pure ITO. This Letter provides a simple and repeatable approach to further improve the light extraction efficiency of GaN-based near-UV LEDs.

14.
Nanotechnology ; 29(19): 195203, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29469057

RESUMO

In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

15.
Nanotechnology ; 26(41): 415601, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26390848

RESUMO

An effective approach for growing large-scale, uniformly aligned ZnO nanorods arrays is demonstrated. The synthesis uses a GaN quantum dot (QD) template produced by a self-assembled Stranski-Krastanow mode in metal organic chemical vapor deposition, which serves as a nucleation site for ZnO owing to the QD's high surface free energy. The resultant ZnO nanorods with uniform shape and length align vertically on the template, while their density is easily tunable by adjusting the density of GaN QDs, which can be adjusted by simply varying growth interruption. By controlling the density of ZnO nanorod arrays, their optical performance can also be improved. This approach opens the possibility of combining one-dimensional (1D) with 0D nanostructures for applications in sensor arrays, piezoelectric antenna arrays, optoelectronic devices, and interconnects.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38657168

RESUMO

Modulating the electrical properties of two-dimensional (2D) materials is a fundamental prerequisite for their development to advanced electronic and optoelectronic devices. Substitutional doping has been demonstrated as an effective method for tuning the band structure in monolayer 2D materials. Here, we demonstrate a facile selective-area growth of vanadium-doped molybdenum disulfide (V-doped MoS2) flakes via pre-patterned vanadium-metal-assisted chemical vapor deposition (CVD). Optical microscopy characterization revealed the presence of flake arrays. Transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were employed to identify the chemical composition and crystalline structure of as-grown flakes. Electrical measurements indicated a light p-type conduction behavior in monolayer V-doped MoS2. Furthermore, the response time of phototransistors based on V-doped MoS2 monolayers exhibited a remarkable capability of 3 ms, representing approximately 3 orders of magnitude faster response than that observed in pure MoS2 phototransistors. This work hereby provides a feasible approach to doping of 2D materials, promising a scalable pathway for the integration of these materials into emerging electronic and optoelectronic devices.

17.
Mater Horiz ; 10(7): 2579-2586, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092183

RESUMO

Two-dimensional (2D) material-based photodetectors, especially those working in the infrared band, have shown great application potential in the thermal imaging, optical communication, and medicine fields. Designing 2D material photodetectors with broadened detection band and enhanced responsivity has become an attractive but challenging research direction. To solve this issue, we report a zirconium trisulfide (ZrS3) infrared photodetector with enhanced and broadened response with the assistance of the synergistic effects of extrinsic photoconduction and photogating effect. The ZrS3 photodetectors can detect infrared light up to 2 µm by extrinsic photoconduction and exhibit a responsivity of 100 mA W-1 under 1550 nm illumination. Furthermore, the ZrS3 infrared photodetectors with an oxide layer show a triple enhanced responsivity due to the photogating effect. Additionally, the infrared imaging capability of the ZrS3 infrared photodetectors is also demonstrated. This work provides a potential way to extend the response range and improve the responsivity for nanomaterial-based photodetectors at the same time.

18.
Sci Rep ; 12(1): 22434, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575216

RESUMO

In this paper, we reported on wafer-scale nanoporous (NP) AlGaN-based deep ultraviolet (DUV) distributed Bragg reflectors (DBRs) with 95% reflectivity at 280 nm, using epitaxial periodically stacked n-Al0.62Ga0.38N/u-Al0.62Ga0.38N structures grown on AlN/sapphire templates via metal-organic chemical vapor deposition (MOCVD). The DBRs were fabricated by a simple one-step selective wet etching in heated KOH aqueous solution. To study the influence of the temperature of KOH electrolyte on the nanopores formation, the amount of charge consumed during etching process was counted, and the surface and cross-sectional morphology of DBRs were characterized by Scanning electron microscopy (SEM) and atomic force microscopy (AFM). As the electrolyte temperature increased, the nanopores became larger while the amount of charge reduced, which revealed that the etching process was a combination of electrochemical and chemical etching. The triangular nanopores and hexagonal pits further confirmed the chemical etching processes. Our work demonstrated a simple wet etching to fabricate high reflective DBRs, which would be useful for AlGaN based DUV devices with microcavity structures.

19.
Front Optoelectron ; 14(4): 507-512, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36637763

RESUMO

Indium gallium nitride (InGaN) based blue light-emitting diodes (LEDs) suffer from insufficient crystal quality and serious efficiency droop in large forward current. In this paper, the InGaN-based blue LEDs are grown on sputtered aluminum nitride (AlN) films to improve the device light power and weaken the efficiency droop. The effects of oxygen flow rate on the sputtering of AlN films on sapphire and device performance of blue LEDs are studied in detail. The mechanism of external quantum efficiency improvement is related to the change of V-pits density in multiple quantum wells. The external quantum efficiency of 66% and 3-V operating voltage are measured at a 40-mA forward current of with the optimal oxygen flow rate of 4 SCCM.

20.
ACS Appl Mater Interfaces ; 13(48): 57540-57547, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34844410

RESUMO

In quasi-two-dimensional (quasi-2D) perovskite films, carriers transport in the cascade structural systems involving various quantum wells (QWs) n, but their efficiency is limited by the severe nonradiative recombination within plentiful n = 1, 2, 3 domains induced by traditional ammonium bromide passivation. Here, we fabricate the quasi-2D films with the elimination of n = 1, 2, 3 domains by introducing the ionic liquid n-butylamine acetate (BAAc) instead of n-butylamine hydrobromide (BABr), which increases the photoluminescence quantum yield (PLQY) and lowers the surface roughness of films. Due to the anion exchange between BAAc and methylamine hydrobromide (MABr), BAAc exhibits a sole passivation effect on methylamine-based perovskites. As a result, the ionic liquid-derived perovskite light-emitting diodes (PeLEDs) display blue emission at 479 nm and show significantly improved performance on external quantum efficiency (EQE) and luminance. Our finding provides insights into the passivating effect of ionic liquid on quasi-2D perovskites and will benefit fabricating PeLEDs with enhanced performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA