Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 89(11): 7630-7643, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38738853

RESUMO

Atropoisomeric chemotypes of diaryl ethers-related scaffolds are prevalent in naturally active compounds. Nevertheless, there remains considerable research to be carried out on the catalytic asymmetric synthesis of these axially chiral molecules. In this instance, we disclose an N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. NHC desymmetrization produces axially chiral diaryl ether atropisomers with high yields and enantioselectivities in moderate circumstances. Chiral diaryl ether compounds may be precursors for highly functionalized diaryl ethers with bioactivity and chiral ligands for asymmetric catalysis.

2.
J Org Chem ; 88(11): 6633-6644, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37133412

RESUMO

Pyranones have raised great concerns owing to their considerable applications in a variety of sectors. However, the development of direct asymmetric allylation of 4-hydroxypyran-2-ones is still restricted. Herein, we present an effective iridium-catalyzed asymmetric functionalization technique for the synthesis of 4-hydroxypyran-2-one derivatives over direct and efficient catalytic asymmetric Friedel-Crafts-type allylation by using allyl alcohols. The allylation products could be obtained with good to high yields (up to 96%) and excellent enantioselectivities (>99% ee). Therefore, the disclosed technique provides a new asymmetric synthetic strategy to explore pyranone derivatives in depth, thus providing an interesting approach for global application and further utilization in organic synthesis and pharmaceutical chemistry.

3.
Angew Chem Int Ed Engl ; 62(7): e202216534, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36536515

RESUMO

Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA