Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L345-L355, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747297

RESUMO

The nongenomic mechanisms by which glucocorticoids modulate ß2 agonist-induced-bronchodilation remain elusive. Our studies aimed to elucidate mechanisms mediating the beneficial effects of glucocorticoids on agonist-induced bronchodilation. Utilizing human precision-cut lung slices (hPCLS), we measured bronchodilation to formoterol, prostaglandin E2 (PGE2), cholera toxin (CTX), or forskolin in the presence and absence of budesonide. Using cultured human airway smooth muscle (HASM), intracellular cAMP was measured in live cells following exposure to formoterol, PGE2, or forskolin in the presence or absence of budesonide. We showed that simultaneous budesonide administration amplified formoterol-induced bronchodilation and attenuated agonist-induced phosphorylation of myosin light chain, a necessary signaling event mediating force generation. In parallel studies, cAMP levels were augmented by simultaneous exposure of HASM cells to formoterol and budesonide. Budesonide, fluticasone, and prednisone alone rapidly increased cAMP levels, but steroids alone had little effect on bronchodilation in hPCLS. Bronchodilation induced by PGE2, CTX, or forskolin was also augmented by simultaneous exposure to budesonide in hPCLS. Furthermore, HASM cells expressed membrane-bound glucocorticoid receptors that failed to translocate with glucocorticoid stimulation and that potentially mediated the rapid effects of steroids on ß2 agonist-induced bronchodilation. Knockdown of glucocorticoid receptor-α had little effect on budesonide-induced and steroid-dependent augmentation of formoterol-induced cAMP generation in HASM. Collectively, these studies suggest that glucocorticoids amplify cAMP-dependent bronchodilation by directly increasing cAMP levels. These studies identify a molecular mechanism by which the combination of glucocorticoids and ß2 agonists may augment bronchodilation in diseases such as asthma or chronic obstructive pulmonary disease.


Assuntos
Brônquios/fisiologia , Broncodilatadores/farmacologia , Budesonida/farmacologia , AMP Cíclico/biossíntese , Músculo Liso/fisiologia , Brônquios/efeitos dos fármacos , Carbacol/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Toxina da Cólera/farmacologia , Colforsina/farmacologia , Dinoprostona/farmacologia , Fluticasona/farmacologia , Fumarato de Formoterol/farmacologia , Humanos , Músculo Liso/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Prednisona/farmacologia , Receptores de Glucocorticoides/metabolismo
2.
Pharm Res ; 34(12): 2557-2567, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28685298

RESUMO

PURPOSE: A scientifically robust prediction of human dose is important in determining whether to progress a candidate drug into clinical development. A particular challenge for inhaled medicines is that unbound drug concentrations at the pharmacological target site cannot be easily measured or predicted. In the absence of such data, alternative empirical methods can be useful. This work is a post hoc analysis based on preclinical in vivo pharmacokinetic/pharmacodynamic (PK/PD) data with the aim to evaluate such approaches and provide guidance on clinically effective dose prediction for inhaled medicines. METHODS: Five empirically based methodologies were applied on a diverse set of marketed inhaled therapeutics (inhaled corticosteroids and bronchodilators). The approaches include scaling of dose based on body weight or body surface area and variants of PK/PD approaches aiming to predict the therapeutic dose based on having efficacious concentrations of drug in the lung over the dosing interval. RESULTS: The most robust predictions of dose were made by body weight adjustment (90% within 3-fold) and by a specific PK/PD approach aiming for an average predicted 75% effect level during the dosing interval (80% within 3-fold). Scaling of dose based on body surface area consistently under predicted the therapeutic dose. CONCLUSIONS: Preclinical in vivo data and empirical scaling to man can be used as a baseline method for clinical dose predictions of inhaled medicines. The development of more sophisticated translational models utilizing free drug concentration and target engagement data is a desirable build.


Assuntos
Corticosteroides/administração & dosagem , Broncodilatadores/administração & dosagem , Pulmão/metabolismo , Administração por Inalação , Corticosteroides/farmacocinética , Corticosteroides/farmacologia , Animais , Benchmarking , Broncodilatadores/farmacocinética , Broncodilatadores/farmacologia , Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Biológicos
3.
J Pharmacol Exp Ther ; 353(2): 340-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736418

RESUMO

In normal physiologic responses to injury and infection, inflammatory cells enter tissue and sites of inflammation through a chemotactic process regulated by several families of proteins, including inflammatory chemokines, a family of small inducible cytokines. In neutrophils, chemokines chemokine (CXC motif) ligand 1 (CXCL1) and CXCL8 are potent chemoattractants and activate G protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXCR2. Several small-molecule antagonists of CXCR2 have been developed to inhibit the inflammatory responses mediated by this receptor. Here, we present the data describing the pharmacology of AZD5069 [N-(2-(2,3-difluorobenzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)[2,4,5,6-(13)C4, 1,3-(15)N2]pyrimidin-4-yl)azetidine-1-sulfonamide,[(15)N2,(13)C4]N-(2-(2,3-difluoro-6-[3H]-benzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)pyrimidin-4-yl)azetidine-1-sulfonamide], a novel antagonist of CXCR2. AZD5069 was shown to inhibit binding of radiolabeled CXCL8 to human CXCR2 with a pIC50 value of 9.1. Furthermore, AZD5069 inhibited neutrophil chemotaxis, with a pA2 of approximately 9.6, and adhesion molecule expression, with a pA2 of 6.9, in response to CXCL1. AZD5069 was a slowly reversible antagonist of CXCR2 with effects of time and temperature evident on the pharmacology and binding kinetics. With short incubation times, AZD5069 appeared to have an antagonist profile with insurmountable antagonism of calcium response curves. This behavior was also observed in vivo in an acute lipopolysaccharide-induced lung inflammation model. Altogether, the data presented here show that AZD5069 represents a novel, potent, and selective CXCR2 antagonist with potential as a therapeutic agent in inflammatory conditions.


Assuntos
Pirimidinas/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Interleucina-8/metabolismo , Cinética , Lipopolissacarídeos/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pirimidinas/uso terapêutico , Ratos , Receptores de Interleucina-8B/metabolismo , Especificidade por Substrato , Sulfonamidas/uso terapêutico , Temperatura
4.
Cells ; 12(2)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672178

RESUMO

Bronchodilators and anti-inflammatory agents are the mainstream treatments in chronic obstructive and pulmonary disease (COPD) and asthma. The combination of ß2 adrenergic receptor (ß2AR) agonists and muscarinic antagonists shows superior bronchoprotective effects compared to these agents individually. Navafenterol (AZD8871) is a single-molecule, dual pharmacology agent combining muscarinic antagonist and ß2AR agonist functions, currently in development as a COPD therapeutic. In precision-cut human lung slices (hPCLS), we investigated the bronchoprotective effect of navafenterol against two non-muscarinic contractile agonists, histamine and thromboxane A2 (TxA2) analog (U46619). Navafenterol pre-treatment significantly attenuated histamine-induced bronchoconstriction and ß2AR antagonist propranolol reversed this inhibitory effect. TxA2 analog-induced bronchoconstriction was attenuated by navafenterol pre-treatment, albeit to a lesser magnitude than that of histamine-induced bronchoconstriction. Propranolol completely reversed the inhibitory effect of navafenterol on TxA2 analog-induced bronchoconstriction. In the presence of histamine or TxA2 analog, navafenterol exhibits bronchoprotective effect in human airways and it is primarily mediated by ß2AR agonism of navafenterol.


Assuntos
Broncodilatadores , Doença Pulmonar Obstrutiva Crônica , Humanos , Broncodilatadores/farmacologia , Antagonistas Muscarínicos/farmacologia , Histamina/farmacologia , Propranolol/farmacologia , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptores Muscarínicos , Agonistas Adrenérgicos/farmacologia , Agonistas Adrenérgicos/uso terapêutico
5.
Nat Struct Mol Biol ; 30(3): 286-295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36747092

RESUMO

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that binds DNA and assembles co-regulator complexes to regulate gene transcription. GR agonists are widely prescribed to people with inflammatory and autoimmune diseases. Here we present high-resolution, multidomain structures of GR in complex with ligand, DNA and co-regulator peptide. The structures reveal how the receptor forms an asymmetric dimer on the DNA and provide a detailed view of the domain interactions within and across the two monomers. Hydrogen-deuterium exchange and DNA-binding experiments demonstrate that ligand-dependent structural changes are communicated across the different domains in the full-length receptor. This study demonstrates how GR forms a distinct architecture on DNA and how signal transmission can be modulated by the ligand pharmacophore, provides a platform to build a new level of understanding of how receptor modifications can drive disease progression and offers key insight for future drug design.


Assuntos
Receptores de Glucocorticoides , Fatores de Transcrição , Humanos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , DNA/metabolismo
6.
Clin Transl Sci ; 16(12): 2494-2506, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873558

RESUMO

Oral corticosteroid use is limited by side effects, some caused by off-target actions on the mineralocorticoid receptor that disrupt electrolyte balance. AZD9567 is a selective, nonsteroidal glucocorticoid receptor modulator. The efficacy, safety, and tolerability of AZD9567 and prednisolone were assessed in a phase IIa study. Anti-inflammatory mechanism of action was also evaluated in vitro in monocytes from healthy donors. In this randomized, double-blind, parallel-group, multicenter study, patients with active rheumatoid arthritis were randomized 1:1 to AZD9567 40 mg or prednisolone 20 mg once daily orally for 14 days. The primary end point was change from baseline in DAS28-CRP at day 15. Secondary end points included components of DAS28-CRP, American College of Rheumatology (ACR) response criteria (ACR20, ACR50, and ACR70), and safety end points, including serum electrolytes. Overall, 21 patients were randomized to AZD9567 (n = 11) or prednisolone (n = 10), and all completed the study. As anticipated, AZD9567 had a similar efficacy profile to prednisolone, with no clinically meaningful (i.e., >1.0) difference in change from baseline to day 15 in DAS28-CRP between AZD9567 and prednisolone (least-squares mean difference: 0.47, 95% confidence interval: -0.49 to 1.43). Similar results were observed for the secondary efficacy end points. In vitro transcriptomic analysis showed that anti-inflammatory responses were similar for AZD9567, prednisolone, and dexamethasone. Unlike prednisolone, AZD9567 had no effect on the serum sodium:potassium ratio. The safety profile was not different from that of prednisolone. Larger studies of longer duration are required to determine whether AZD9567 40 mg may in the future be an alternative to prednisolone in patients with inflammatory disease.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Prednisolona/efeitos adversos , Antirreumáticos/uso terapêutico , Resultado do Tratamento , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Método Duplo-Cego , Metotrexato/uso terapêutico
7.
Bioorg Med Chem Lett ; 22(1): 689-95, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079756

RESUMO

Libraries of dibasic compounds designed around the molecular scaffold of the DA(2)/ß(2) dual agonist sibenadet (Viozan™) have yielded a number of promising starting points that have been further optimised into novel potent and selective target molecules with required pharmacokinetic properties. From a shortlist, 31 was discovered as a novel, high potency, and highly efficacious ß(2)-agonist with high selectivity and a duration of action commensurable with once daily dosing.


Assuntos
Agonistas Adrenérgicos beta/síntese química , Agonistas Adrenérgicos beta/farmacologia , Química Farmacêutica/métodos , Animais , Asma/tratamento farmacológico , Broncodilatadores/farmacologia , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Desenho de Fármacos , Cobaias , Humanos , Concentração Inibidora 50 , Modelos Químicos , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Tiazóis/farmacologia , Fatores de Tempo
8.
Br J Pharmacol ; 135(5): 1199-208, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11877327

RESUMO

1. Human embryonic kidney (HEK)-293 cells expressing recombinant G alpha(i)-coupled, human CXC chemokine receptor 2 (CXCR2) were used to study the elevation of the intracellular [Ca(2+)] ([Ca(2+)](i)) in response to interleukin-8 (IL-8) following pre-stimulation of endogenously expressed P2Y1 or P2Y2 nucleotide receptors. 2. Pre-stimulation of cells with adenosine 5'-triphosphate (ATP) revealed a substantial Ca(2+) signalling component mediated by IL-8 (E(max)=83 +/- 8% of maximal ATP response, pEC(50) of IL-8 response=9.7 +/- 0.1). 3. 1 microM 2-methylthioadenosine 5'-diphosphate (2MeSADP; P2Y1 selective) and 100 microM uridine 5'-triphosphate (UTP; P2Y2 selective) stimulated equivalent maximal increases in [Ca(2+)](i) elevation. However, UTP caused a sustained elevation, whilst following 2MeSADP [Ca(2+)](i) rapidly returned to basal levels. 4. Both UTP and 2MeSADP increased the potency and magnitude of IL-8-mediated [Ca(2+)](i) elevation but the effects of UTP (E(max) of IL-8 response increased to 50 +/- 1% of the maximal response to ATP, pEC(50) increased to 9.8 +/- 0.1) were greater than those of 2MeSADP (E(max) increased to 36 +/- 2%, pEC(50) increased to 8.7 +/- 0.2). 5. 5. The potentiation of IL-8-mediated Ca(2+) signalling by UTP was not dependent upon the time of IL-8 addition following UTP but was dependent on the continued presence of UTP. Potentiated IL-8 Ca(2+) signalling was apparent in the absence of extracellular Ca(2+), demonstrating the release of Ca(2+) from intracellular stores. 6. Activation of P2Y1 and P2Y2 receptors also revealed Ca(2+) signalling by an endogenously expressed, G alpha(s)-coupled beta-adrenoceptor. 7. In conclusion, pre-stimulation of P2Y nucleotide receptors, particularly P2Y2, facilitates Ca(2+) signalling by either recombinant CXCR2 or endogenous beta-adrenoceptors.


Assuntos
Sinalização do Cálcio/fisiologia , Receptores de Interleucina-8B/fisiologia , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Humanos , Agonistas do Receptor Purinérgico P2 , Receptor Cross-Talk , Receptores de Interleucina-8B/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2 , Proteínas Recombinantes/metabolismo
9.
Br J Pharmacol ; 158(1): 169-79, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19558544

RESUMO

BACKGROUND AND PURPOSE: Beta(2)-adrenoceptor agonists (beta(2)-agonists) are important bronchodilators used in the treatment of asthma and chronic obstructive pulmonary disease. At the molecular level, beta(2)-adrenergic agonist stimulation induces desensitization of the beta(2)-adrenoceptor. In this study, we have examined the relationships between initial effect and subsequent reduction of responsiveness to restimulation for a panel of beta(2)-agonists in cellular and in vitro tissue models. EXPERIMENTAL APPROACH: Beta(2)-adrenoceptor-induced responses and subsequent loss of receptor responsiveness were studied in primary human airway smooth muscle cells and bronchial epithelial cells by measuring cAMP production. Receptor responsiveness was compared at equi-effective concentrations, either after continuous incubation for 24 h or after a 1 h pulse exposure followed by a 23 h washout. Key findings were confirmed in guinea pig tracheal preparations in vitro. KEY RESULTS: There were differences in the reduction of receptor responsiveness in human airway cells and in vitro guinea pig trachea by a panel of beta(2)-agonists. When restimulation occurred immediately after continuous incubation, loss of responsiveness correlated with initial effect for all agonists. After the 1 h pulse exposure, differences between agonists emerged, for example isoprenaline and formoterol induced the least reduction of responsiveness. High lipophilicity was, to some extent, predictive of loss of responsiveness, but other factors appeared to be involved in determining the relationships between effect and subsequent loss of responsiveness for individual agonists. CONCLUSIONS AND IMPLICATIONS: There were clear differences in the ability of different beta(2) agonists to induce loss of receptor responsiveness at equi-effective concentrations.


Assuntos
Agonistas Adrenérgicos/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Cobaias , Humanos , Masculino , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Mucosa Respiratória/citologia , Fatores de Tempo , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA