Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2313192121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386706

RESUMO

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.


Assuntos
Aminoácidos , Eletricidade , Catálise , Escherichia coli , Conformação Molecular , Tetra-Hidrofolato Desidrogenase
2.
J Virol ; 96(22): e0121722, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326275

RESUMO

Rabbit hemorrhagic disease virus (RHDV) typically causes a fatal disease in rabbits. In Australia, RHDV was imported to control the feral rabbit population, while it poses a severe threat to native rabbits in other countries. RHDV variants are genetically diverse and serological studies using antibodies isolated from infected rabbits or raised against RHDV virus-like particles (VLPs) have found RHDV variants antigenically distinct. In this study, we determined the X-ray crystal structure of an RHDV GI.2 (N11 strain) protruding (P) domain in complex with a diagnostic monoclonal antibody (2D9) Fab. We showed that 2D9 interacted with conserved and variable residues on top of the P domain with nanomolar affinity. To better illustrate 2D9 specificity, we determined the X-ray crystal structure of an RHDV GI.1b (Ast89 strain) that was a 2D9 non-binder. Structural analysis indicated that amino acid substitutions on the GI.1b P domain likely restricted 2D9 binding. Interestingly, a model of the GI.2 P domain-Fab complex superimposed onto a cryo-EM structure of an RHDV VLP revealed that 2D9 Fab molecules clashed with neighboring Fabs and indicated that there was a reduced antibody binding occupancy. Moreover, the RHDV GI.2 histo-blood group antigen (HBGA) co-factor binding site appeared obstructed when 2D9 was modeled on the VLP and suggested that 2D9 might also function by blocking HBGA attachment. Overall, this new data provides the first structural basis of RHDV antibody specificity and explains how amino acid variation at the binding site likely restricts 2D9 cross-reactivity. IMPORTANCE Isolated RHDV antibodies have been used for decades to distinguish between antigenic variants, monitor temporal capsid evolution, and examine neutralizing capacities. In this study, we provided the structural basis for an RHDV GI.2 specific diagnostic antibody (2D9) binding and reveal that a small number of amino acid substitutions at the binding site could differentiate between RHDV GI.2 and GI.1b. This novel structural information provides a framework for understanding how RHDV displays a specific antigenic epitope and engages an antibody at the atomic level. Importantly, part of the 2D9 binding region was earlier reported to contain a neutralizing epitope and our structural modeling as well as recent human norovirus antibody-mediated neutralization studies, suggest that the 2D9 antibody has the potential to block HBGA attachment. These new findings should aid in characterizing antigenic variants and advance the development of novel monoclonal antibodies for diagnostics and therapeutics.


Assuntos
Especificidade de Anticorpos , Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/veterinária , Epitopos/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769480

RESUMO

A natural recombinant myxoma virus (referred to as ha-MYXV or MYXV-Tol08/18) emerged in the Iberian hare (Lepus granatensis) and the European rabbit (Oryctolagus cuniculus) in late 2018 and mid-2020, respectively. This new virus is genetically distinct from classic myxoma virus (MYXV) strains that caused myxomatosis in rabbits until then, by acquiring an additional 2.8 Kbp insert within the m009L gene that disrupted it into ORFs m009L-a and m009L-b. To distinguish ha-MYXV from classic MYXV strains, we developed a robust qPCR multiplex technique that combines the amplification of the m000.5L/R duplicated gene, conserved in all myxoma virus strains including ha-MYXV, with the amplification of two other genes targeted by the real-time PCR systems designed during this study, specific either for classic MYXV or ha-MYXV strains. The first system targets the boundaries between ORFs m009L-a and m009L-b, only contiguous in classic strains, while the second amplifies a fragment within gene m060L, only present in recombinant MYXV strains. All amplification reactions were validated and normalized by a fourth PCR system directed to a housekeeping gene (18S rRNA) conserved in eukaryotic organisms, including hares and rabbits. The multiplex PCR (mPCR) technique described here was optimized for Taqman® and Evagreen® systems allowing the detection of as few as nine copies of viral DNA in the sample with an efficiency > 93%. This real-time multiplex is the first fast method available for the differential diagnosis between classic and recombinant MYXV strains, also allowing the detection of co-infections. The system proves to be an essential and effective tool for monitoring the geographical spread of ha-MYXV in the hare and wild rabbit populations, supporting the management of both species in the field.


Assuntos
Lagomorpha/virologia , Myxoma virus , Mixomatose Infecciosa/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Animais Selvagens , Diagnóstico Diferencial , Transferência Genética Horizontal/genética , Tipagem Molecular/métodos , Tipagem Molecular/veterinária , Myxoma virus/classificação , Myxoma virus/genética , Mixomatose Infecciosa/virologia , Coelhos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espanha
4.
J Gen Virol ; 98(7): 1658-1666, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28714849

RESUMO

Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.


Assuntos
Lagovirus/classificação , RNA Viral/genética , Terminologia como Assunto , Animais , Infecções por Caliciviridae/virologia , Genótipo , Lebres , Lagovirus/genética , Lagovirus/patogenicidade , Filogenia , Coelhos
5.
Glycoconj J ; 34(5): 679-689, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28823097

RESUMO

Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be critical for the infection process. Therefore, we have determined binding epitopes of synthetic type 1 to 6 blood group A- and B-tetrasaccharides binding to GII.4 human Norovirus virus like particles (VLPs) using STD NMR experiments. So far, little information is available from crystal structure analysis studies on the interactions of the reducing-end sugars with the protruding domain (P-domain) of the viral coat protein VP1. Here, we show that the reducing-end sugars make notable contacts with the protein surface. The type of glycosidic linkage, and the identity of the sugar at the reducing end modulate HBGA recognition. Most strikingly, type 2 structures yield only very poor saturation transfer indicating impeded binding. This observation is in accordance with previous mass spectrometry based affinity measurements, and can be understood based on recent crystal structure data of a complex of highly homologous GII.4 P-dimers with H-type 2 trisaccharide where the N-acetyl group of the reducing N-acetyl glucosamine residue points towards a loop comprising amino acids Q390 to H395. We suggest that in our case, binding of type 2 A- and B-tetrasaccharides leads to steric conflicts with this loop. In order to identify factors determining L-Fuc recognition, we also synthesized GII.4 VLPs with point mutations D391A and H395A. Prior studies had suggested that these residues, located in a second shell around the L-Fuc binding site, assist L-Fuc binding. STD NMR experiments with L-Fuc and B-trisaccharide in the presence of wild type and mutant VLPs yield virtually identical binding epitopes suggesting that these two mutations do not significantly alter HBGA recognition. Our study emphasizes that recognition of α-(1→2)-linked L-Fuc residues is a conserved feature of GII.4 noroviruses. However, structural variation of the HBGA core structures clearly modulates molecular recognition depending on the genotype.


Assuntos
Antígenos de Grupos Sanguíneos/química , Proteínas do Capsídeo/química , Epitopos/química , Norovirus/química , Oligossacarídeos/química , Vírion/química , Sítios de Ligação , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Configuração de Carboidratos , Clonagem Molecular , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/química , Fucose/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Genótipo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Norovirus/ultraestrutura , Oligossacarídeos/metabolismo , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vírion/ultraestrutura
6.
J Virol ; 89(4): 2378-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505081

RESUMO

UNLABELLED: Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family (Lagovirus genus). RHDV is highly contagious and attaches to epithelial cells in the digestive or respiratory tract, leading to massive lesions with high mortality rates. A new variant of RHDV (termed RHDVb) recently has emerged, and previously vaccinated rabbits appear to have little protection against this new strain. Similar to human norovirus (Caliciviridae, Norovirus genus), RHDV binds histo-blood group antigens (HBGAs), and this is thought to be important for infection. Here, we report the HBGA binding site on the RHDVb capsid-protruding domain (P domain) using X-ray crystallography. The HBGA binding pocket was located in a negatively charged patch on the side of the P domain and at a dimeric interface. Residues from both monomers contributed to the HBGA binding and involved a network of direct hydrogen bonds and water-mediated interactions. An amino acid sequence alignment of different RHDV strains indicated that the residues directly interacting with the ABH-fucose of the HBGAs (Asp472, Asn474, and Ser479) were highly conserved. This result suggested that different RHDV strains also could bind HBGAs at the equivalent pocket. Moreover, several HBGA binding characteristics between RHDVb and human genogroup II norovirus were similar, which indicated a possible convergent evolution of HBGA binding interactions. Further structural studies with other RHDV strains are needed in order to better understand the HBGA binding mechanisms among the diverse RHDV strains. IMPORTANCE: We identified, for the first time, the HBGA binding site on an RHDVb P domain using X-ray crystallography. Our results showed that RHDVb and human genogroup II noroviruses had similar HBGA binding interactions. Recently, it was discovered that synthetic HBGAs or HBGA-expressing enteric bacteria could enhance human genogroup II norovirus infection in B cells. Considering that RHDVb and genogroup II norovirus similarly interacted with HBGAs, it may be possible that a comparable cell culture system also could work with RHDVb. Taken together, these new findings will extend our understanding of calicivirus HBGA interactions and may help to elucidate the specific roles of HBGAs in calicivirus infections.


Assuntos
Antígenos de Grupos Sanguíneos/química , Proteínas do Capsídeo/química , Vírus da Doença Hemorrágica de Coelhos/química , Animais , Sítios de Ligação , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/metabolismo , Sequência Conservada , Cristalografia por Raios X , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Coelhos , Ligação Viral
7.
J Gen Virol ; 96(Pt 6): 1309-1319, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626685

RESUMO

Rabbit hemorrhagic disease virus (RHDV), a Lagovirus of the family Caliciviridae, causes rabbit hemorrhagic disease (RHD) in the European rabbit (Oryctolagus cuniculus). The disease was first documented in 1984 in China and rapidly spread worldwide. In 2010, a new RHDV variant emerged, tentatively classified as 'RHDVb'. RHDVb is characterized by affecting vaccinated rabbits and those <2 months old, and is genetically distinct (~20 %) from older strains. To determine the evolution of RHDV, including the new variant, we generated 28 full-genome sequences from samples collected between 1994 and 2014. Phylogenetic analysis of the gene encoding the major capsid protein, VP60, indicated that all viruses sampled from 2012 to 2014 were RHDVb. Multiple recombination events were detected in the more recent RHDVb genomes, with a single major breakpoint located in the 5' region of VP60. This breakpoint divides the genome into two regions: one that encodes the non-structural proteins and another that encodes the major and minor structural proteins, VP60 and VP10, respectively. Additional phylogenetic analysis of each region revealed two types of recombinants with distinct genomic backgrounds. Recombinants always include the structural proteins of RHDVb, with non-structural proteins from non-pathogenic lagoviruses or from pathogenic genogroup 1 strains. Our results show that in contrast to the evolutionary history of older RHDV strains, recombination plays an important role in generating diversity in the newly emerged RHDVb.


Assuntos
Evolução Molecular , Genoma Viral , Vírus da Doença Hemorrágica de Coelhos/genética , Recombinação Genética , Animais , China , Análise por Conglomerados , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Coelhos , Análise de Sequência de DNA , Homologia de Sequência
8.
Arch Virol ; 159(2): 321-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23942953

RESUMO

Rabbit haemorrhagic disease virus (RHDV), genus Lagovirus, family Caliciviridae, causes a large number of deaths in wild and domestic adult European rabbits (Oryctolagus cuniculus). The first documented outbreak dates from 1984 in China, but the virus rapidly dispersed worldwide. In 1997, an antigenic variant was detected in Italy and designated RHDVa. Despite causing symptoms similar to those caused by classic RHDV strains, marked antigenic and genetic differences exist. In some parts of Europe, RHDVa is replacing classic strains. Here, we report the presence of RHDVa on the Iberian Peninsula, where this variant was thought not to contribute to viral diversity.


Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Doenças dos Roedores/virologia , Animais , Infecções por Caliciviridae/virologia , Análise por Conglomerados , Genótipo , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/genética , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Coelhos , Análise de Sequência de DNA , Espanha
9.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091831

RESUMO

Chemical and conformational changes underlie the functional cycles of proteins. Comparative crystallography can reveal these changes over time, over ligands, and over chemical and physical perturbations in atomic detail. A key difficulty, however, is that the resulting observations must be placed on the same scale by correcting for experimental factors. We recently introduced a Bayesian framework for correcting (scaling) X-ray diffraction data by combining deep learning with statistical priors informed by crystallographic theory. To scale comparative crystallography data, we here combine this framework with a multivariate statistical theory of comparative crystallography. By doing so, we find strong improvements in the detection of protein dynamics, element-specific anomalous signal, and the binding of drug fragments.

10.
bioRxiv ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39071394

RESUMO

DJ-1 (PARK7) is an intensively studied protein whose cytoprotective activities are dysregulated in multiple diseases. DJ-1 has been reported as having two distinct enzymatic activities in defense against reactive carbonyl species that are difficult to distinguish in conventional biochemical experiments. Here, we establish the mechanism of DJ-1 using a synchrotron-compatible version of mix-and-inject-serial crystallography (MISC), which was previously performed only at XFELs, to directly observe DJ-1 catalysis. We designed and used new diffusive mixers to collect time-resolved Laue diffraction data of DJ-1 catalysis at a pink beam synchrotron beamline. Analysis of structurally similar methylglyoxal-derived intermediates formed through the DJ-1 catalytic cycle shows that the enzyme catalyzes nearly two turnovers in the crystal and defines key aspects of its glyoxalase mechanism. In addition, DJ-1 shows allosteric communication between a distal site at the dimer interface and the active site that changes during catalysis. Our results rule out the widely cited deglycase mechanism for DJ-1 action and provide an explanation for how DJ-1 produces L-lactate with high chiral purity.

11.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131362

RESUMO

Time-resolved X-ray crystallography (TR-X) at synchrotrons and free electron lasers is a promising technique for recording dynamics of molecules at atomic resolution. While experimental methods for TR-X have proliferated and matured, data analysis is often difficult. Extracting small, time-dependent changes in signal is frequently a bottleneck for practitioners. Recent work demonstrated this challenge can be addressed when merging redundant observations by a statistical technique known as variational inference (VI). However, the variational approach to time-resolved data analysis requires identification of successful hyperparameters in order to optimally extract signal. In this case study, we present a successful application of VI to time-resolved changes in an enzyme, DJ-1, upon mixing with a substrate molecule, methylglyoxal. We present a strategy to extract high signal-to-noise changes in electron density from these data. Furthermore, we conduct an ablation study, in which we systematically remove one hyperparameter at a time to demonstrate the impact of each hyperparameter choice on the success of our model. We expect this case study will serve as a practical example for how others may deploy VI in order to analyze their time-resolved diffraction data.

12.
Viruses ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38932159

RESUMO

In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.


Assuntos
Caliciviridae , Genética Reversa , Genética Reversa/métodos , Caliciviridae/genética , Genoma Viral , Animais , Humanos , Replicação Viral
13.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091818

RESUMO

Most X-ray sources are inherently polychromatic. Polychromatic ("pink") X-rays provide an efficient way to conduct diffraction experiments as many more photons can be used and large regions of reciprocal space can be probed without sample rotation during exposure-ideal conditions for time-resolved applications. Analysis of such data is complicated, however, causing most X-ray facilities to discard >99% of X-ray photons to obtain monochromatic data. Key challenges in analyzing polychromatic diffraction data include lattice searching, indexing and wavelength assignment, correction of measured intensities for wavelength-dependent effects, and deconvolution of harmonics. We recently described an algorithm, Careless, that can perform harmonic deconvolution and correct measured intensities for variation in wavelength when presented with integrated diffraction intensities and assigned wavelengths. Here, we present Laue-DIALS, an open-source software pipeline that indexes and integrates polychromatic diffraction data. Laue-DIALS is based on the dxtbx toolbox, which supports the DIALS software commonly used to process monochromatic data. As such, Laue-DIALS provides many of the same advantages: an open-source, modular, and extensible architecture, providing a robust basis for future development. We present benchmark results showing that Laue-DIALS, together with Careless, provides a suitable approach to the analysis of polychromatic diffraction data, including for time-resolved applications.

14.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 796-805, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584427

RESUMO

X-ray diffraction enables the routine determination of the atomic structure of materials. Key to its success are data-processing algorithms that allow experimenters to determine the electron density of a sample from its diffraction pattern. Scaling, the estimation and correction of systematic errors in diffraction intensities, is an essential step in this process. These errors arise from sample heterogeneity, radiation damage, instrument limitations and other aspects of the experiment. New X-ray sources and sample-delivery methods, along with new experiments focused on changes in structure as a function of perturbations, have led to new demands on scaling algorithms. Classically, scaling algorithms use least-squares optimization to fit a model of common error sources to the observed diffraction intensities to force these intensities onto the same empirical scale. Recently, an alternative approach has been demonstrated which uses a Bayesian optimization method, variational inference, to simultaneously infer merged data along with corrections, or scale factors, for the systematic errors. Owing to its flexibility, this approach proves to be advantageous in certain scenarios. This perspective briefly reviews the history of scaling algorithms and contrasts them with variational inference. Finally, appropriate use cases are identified for the first such algorithm, Careless, guidance is offered on its use and some speculations are made about future variational scaling methods.


Assuntos
Algoritmos , Projetos de Pesquisa , Teorema de Bayes , Difração de Raios X
15.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398233

RESUMO

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to lack of experimental access. This shortcoming is evident with E. coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we present ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments that enable identification of coupled conformational changes in DHFR. We identify a global hinge motion and local networks of structural rearrangements that are engaged by substrate protonation to regulate solvent access and promote efficient catalysis. The resulting mechanism shows that DHFR's two-step catalytic mechanism is guided by a dynamic free energy landscape responsive to the state of the substrate.

16.
Emerg Infect Dis ; 18(12): 2009-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171812

RESUMO

Outbreaks of rabbit hemorrhagic disease have occurred recently in young rabbits on farms on the Iberian Peninsula where rabbits were previously vaccinated. Investigation identified a rabbit hemorrhagic disease virus variant genetically related to apathogenic rabbit caliciviruses. Improved antivirus strategies are needed to slow the spread of this pathogen.


Assuntos
Infecções por Caliciviridae/veterinária , Surtos de Doenças/veterinária , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/genética , Dados de Sequência Molecular , Filogenia , Coelhos , Espanha/epidemiologia
17.
Phytother Res ; 26(10): 1513-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22318977

RESUMO

The antiherpes virus properties of Phyllanthus orbicularis Kunth, a Cuban-endemic medicinal plant, have been reported previously but data on its phytochemical profile and identification of antiviral metabolites as well as their mechanisms of action are still lacking. In this work, a bioactivity-guided phytochemical analysis was performed in order to isolate anti HSV-2 compounds. P. orbicularis contained mainly phenolic acids derivatives and flavonoids. The antiviral effects were attributed to (-)-epicatechin-3-O-gallate (EC(50) = 11.7 µg/mL), procyanidins B1 and B2 (EC(50) = 32.8 µg/mL and 24.2 µg/mL, respectively) as well as oligomeric and polymeric procyanidins and their gallate derivatives. The antiviral mechanisms of the active P. orbicularis extracts and fractions were also investigated and the inhibition of several HSV-2 early replication events and DNA synthesis were observed. This is the first study of extensive fractionation and phytochemical characterization of phenolic compounds from this species.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 2/efeitos dos fármacos , Phyllanthus/química , Extratos Vegetais/farmacologia , Animais , Catequina/análogos & derivados , Catequina/isolamento & purificação , Catequina/farmacologia , Fracionamento Químico , Chlorocebus aethiops , Extratos Vegetais/química , Plantas Medicinais/química , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia , Células Vero
18.
Nat Commun ; 13(1): 7764, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522310

RESUMO

Novel X-ray methods are transforming the study of the functional dynamics of biomolecules. Key to this revolution is detection of often subtle conformational changes from diffraction data. Diffraction data contain patterns of bright spots known as reflections. To compute the electron density of a molecule, the intensity of each reflection must be estimated, and redundant observations reduced to consensus intensities. Systematic effects, however, lead to the measurement of equivalent reflections on different scales, corrupting observation of changes in electron density. Here, we present a modern Bayesian solution to this problem, which uses deep learning and variational inference to simultaneously rescale and merge reflection observations. We successfully apply this method to monochromatic and polychromatic single-crystal diffraction data, as well as serial femtosecond crystallography data. We find that this approach is applicable to the analysis of many types of diffraction experiments, while accurately and sensitively detecting subtle dynamics and anomalous scattering.


Assuntos
Difração de Raios X , Teorema de Bayes , Cristalografia por Raios X
19.
Transbound Emerg Dis ; 69(4): 1684-1690, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35366052

RESUMO

Myxomatosis is an emergent disease in the Iberian hare (Lepus granatensis). In this species, the disease is caused by a natural recombinant virus (ha-myxoma virus [MYXV]) identified for the first time in 2018 and has since been responsible for a large number of outbreaks in Spain and Portugal. The ha-MYXV, which harbours a 2.8 Kb insert-disrupting gene M009L, can also infect and cause disease in wild and domestic rabbits, despite being less frequently identified in rabbits. During the laboratory investigations of wild leporids found dead in Portugal carried out within the scope of a Nacional Surveillance Plan (Dispatch 4757/17, MAFDR), co-infection events by classic (MYXV) and naturally recombinant (ha-MYXV) strains were detected in both one Iberian hare and one European wild rabbit (Oryctolagus cuniculus algirus). These two cases were initially detected by a multiplex qPCR detection of MYXV and ha-MYXV and subsequently confirmed by conventional PCR and sequencing of the M009L gene, which contains an ha-MYXV-specific insertion. To our knowledge, this is the first documented report of co-infection by classic MYXV and ha-MYXV strains either in Iberian hare or in European wild rabbit. It is also the first report of infection of an Iberian hare by a classic MYXV strain. These findings highlight the continuous evolution of the MYXV and the frequent host range changes that justify the nonstop monitoring of the sanitary condition of wild Leporidae populations in the Iberian Peninsula.


Assuntos
Coinfecção , Lebres , Myxoma virus , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Especificidade de Hospedeiro , Myxoma virus/genética , Filogenia , Coelhos
20.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 986-996, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916223

RESUMO

Single-wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non-uniform freezing. Here, a strategy is presented to obtain high-quality data from room-temperature, single-crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature.


Assuntos
Proteínas , Cristalização/métodos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Proteínas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA