Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biol Int ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285531

RESUMO

Cytotoxic CD8+ T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer-derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In-vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.

2.
Pestic Biochem Physiol ; 170: 104680, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980059

RESUMO

The progression of neurodegenerative disease is very complex biological process and the molecular crosstalk of inflammatory cytokines during neurodegeneration is associated with multiple cascade signalling. Few evidences suggest that environmental toxin, Paraquat (PQ) administration activates the microglia and intensify the release of proinflamatory cytokines during progression of Parkinson''s disease (PD) but the proper aetiology remained unknown. However, the fundamental role of anti-inflammatory molecule Decapentaplegic (Dpp), homologue of the secreted mammalian Transforming growth factor-ß (TGF-ß) signalling molecule during neurodegeneration of invertebrate fly model is yet to establish. To elucidate the molecular processes during early stage of Parkinson's disease, we observed neuro-toxin plays a determining role in the increased vulnerability to a particular PQ exposure that is attended by decreased lifespan, severe locomotor deficits, and more loss of dopaminergic (DA) neuron in PQ-treated Dpp deficient fly than wild type (WT). Simultaneously, activated microglia induced the inflammatory response with the release of pro-inflammatory and anti-inflammatory cytokine in Drosophila during neurodegeneration. Moreover, neuro-toxin exposure altered the expression of innate immune genes in both WT and mutant fly compared to the respective PQ-treated flies. Interestingly, PQ exposure reduced the expression of innate immune genes in mutant fly compared to WT. It may indicate that PQ exposure had broken down the immune defence response in mutant fly than WT whereas, without PQ exposure the innate immune tolerance level was higher in fly with reduced Dpp expression than WT. Thus, we observed the conserve anti-inflammatory factor TGF-ß may exhibit a crucial defensive role during inflammation mediated neurodegeneration in invertebrate Drosophila melanogaster.


Assuntos
Proteínas de Drosophila/genética , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Animais , Modelos Animais de Doenças , Drosophila , Drosophila melanogaster/genética , Imunidade Inata/genética , Inflamação/induzido quimicamente , Inflamação/genética , Neuroglia , Paraquat/toxicidade
3.
Indian J Biochem Biophys ; 51(6): 567-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25823231

RESUMO

There are several reports on herbicide paraquat (PQ)-induced Parkinsonian-like pathology in different animal models, including Drosophila melanogaster. Also, the role of some inflammatory factors, such as nitric oxide is reported in PQ-induced neuroinflammation of Drosophila. Although invertebrate model is valuable to study the conserved inflammatory pathway at the time of neurodegeneration, but neuroinflammation during PQ-mediated neurodegeneration has not been studied explicitly in Drosophila. In this study, the inflammatory response was examined in Drosophila model during PQ-induced neurodegeneration. We found that after exposure to PQ, survivability and locomotion ability were affected in both sexes of Drosophila. Behavioural symptoms indicated similar physiological features of Parkinson's disease (PD) in different animal models, as well as in humans. Our study revealed alteration in proinflamatory factor, TNF-α and Eiger (the Drosophila homologue in TNF superfamily) was changed in PQ-treated Drosophila both at protein and mRNA level during neurodegeneration. To ensure the occurrence of neurodegeneration, tyrosine hydroxylase (TH) positive neuronal cell loss was considered as a hallmark of PD in the fly brain. Thus, our result revealed the conserved inflammatory events in terms of expression of TNF-α and Eiger present during a sublethal dose of PQ-administered neurodegeneration in male and female Drosophila with significant variation in proinflammatory factor level among both the sexes.


Assuntos
Drosophila melanogaster/imunologia , Neurite (Inflamação)/imunologia , Doenças Neurodegenerativas/imunologia , Neurônios/imunologia , Paraquat , Fator de Necrose Tumoral alfa/imunologia , Tirosina 3-Mono-Oxigenase/imunologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Relação Dose-Resposta a Droga , Feminino , Herbicidas , Masculino , Neurite (Inflamação)/induzido quimicamente , Doenças Neurodegenerativas/induzido quimicamente , Neurônios/patologia , Caracteres Sexuais
4.
Brain Res Bull ; 156: 131-140, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31891753

RESUMO

MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T4 and T3) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T4 in SN and hippocampus, T3 in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T4 levels changed differentially, T3 levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T4 and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T4 levels remained unchanged while the changes in T3 and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T4 and T3 levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T4, T3 and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T4 level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Glândula Tireoide/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/sangue , Tireotropina/sangue , Tiroxina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA