Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 90(9): 2063-2076, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27342245

RESUMO

Anthracyclines, e.g., doxorubicin (DOX), and anthracenediones, e.g., mitoxantrone (MTX), are drugs used in the chemotherapy of several cancer types, including solid and non-solid malignancies such as breast cancer, leukemia, lymphomas, and sarcomas. Although they are effective in tumor therapy, treatment with these two drugs may lead to side effects such as arrhythmia and heart failure. At the same clinically equivalent dose, MTX causes slightly reduced cardiotoxicity compared with DOX. These drugs interact with iron to generate reactive oxygen species (ROS), target topoisomerase 2 (Top2), and impair mitochondria. These are some of the mechanisms through which these drugs induce late cardiomyopathy. In this review, we compare the cardiotoxicities of these two chemotherapeutic drugs, DOX and MTX. As described here, even though they share similarities in their modes of toxicant action, DOX and MTX seem to differ in a key aspect. DOX is a more redox-interfering drug, while MTX induces energy imbalance. In addition, DOX toxicity can be explained by underlying mechanisms that include targeting of Top2 beta, mitochondrial impairment, and increases in ROS generation. These modes of action have not yet been demonstrated for MTX, and this knowledge gap needs to be filled.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Mitoxantrona/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos de Neoplasias/metabolismo , Cardiotoxicidade , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Humanos , Ferro/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Topoisomerase II/farmacologia
2.
Toxicol Mech Methods ; 22(7): 533-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22563929

RESUMO

The current study aimed to determine the role of oxidants in cardiac and pulmonary toxicities induced by chronic exposure to ROFA. Eighty Wistar rats were divided into four groups: G1 (10 µL Saline), G2 (ROFA 50 µg/10 µL), G3 (ROFA 250 µg/10 µL) and G4 (ROFA 500 µg/10 µL). Rats received ROFA by nasotropic instillation for 90 days. After that, they were euthanized and bronchoalveolar lavage (BAL) was performed for total count of leukocytes, protein and lactate dehydrogenase (LDH) determinations. Lungs and heart were removed to measure lipid peroxidation (MDA), catalase (CAT) and superoxide dismutase (SOD) activity. BAL presented an increase in leukocytes count in G4 in comparison to the Saline group (p = 0.019). In lung, MDA level was not modified by ROFA, while CAT was higher in G4 when compared to all other groups (p = 0.013). In heart, G4 presented an increase in MDA (p = 0.016) and CAT (p = 0.027) levels in comparison to G1. The present study demonstrated cardiopulmonary oxidative changes after a chronic ROFA exposure. More specifically, the heart tissue seems to be more susceptible to oxidative effects of long-term exposure to ROFA than the lung.


Assuntos
Poluentes Atmosféricos/toxicidade , Cinza de Carvão/toxicidade , Coração/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Catalase/metabolismo , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Instilação de Medicamentos , Contagem de Leucócitos , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Miocárdio/enzimologia , Miocárdio/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/enzimologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Testes de Toxicidade Crônica
3.
Behav Brain Res ; 425: 113838, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35283195

RESUMO

Restrictive diets (RD) can influence the inflammatory phenotype of dams and their offspring. Thus, this study aimed to evaluate the effects of caloric restriction on the neuroinflammatory profile in the hippocampus and the short-term recognition memory of male offspring from RD-fed dams. Mice dams received standard diet ad libitum (CONT) or restrictive diet (RD; 30% reduction of CONT consumption) during pregnancy and lactation. Male pups were weaned at 21 days and randomly divided into two groups that received CONT or RD; groups were named according to maternal/offspring diets: CONT/CONT, CONT/RD, RD/CONT, and RD/RD. At 90 days old, short-term memory was assessed by the object recognition test (ORT); the inflammatory state of the hippocampus was analyzed by gene expression of sirtuin-1 (Sirt1) and inflammasome Nlrp3; and by protein expression of toll-like receptor-4 (TLR-4) and zonula occludens-1 (ZO-1). Our results showed an improvement in short-term memory in RD-fed offspring. The expression of Sirt1 was higher in RD/CONT compared to CONT/CONT and decreased in RD/RD compared to CONT/RD. Nlrp3 gene expression showed an offspring effect, being decreased in RD-fed mice. TLR-4 expression was higher in RD/CONT compared to CONT/CONT, similarly to ZO-1 expression. However, ZO-1 also showed a maternal diet effect and increased expression in the offspring of RD dams. Our findings demonstrate that caloric restriction improved short-term recognition memory. However, a restrictive diet should be applied with caution; depending on the offspring's diet, it may not benefit the neuroinflammatory phenotype or cognition.


Assuntos
Restrição Calórica , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Camundongos , Gravidez , Hipocampo/metabolismo , Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Memória de Curto Prazo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Toxicol In Vitro ; 52: 203-213, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29913208

RESUMO

Doxorubicin (DOX) and Mitoxantrone (MTX) are very effective drugs for a range of tumors despite being highly cardiotoxic. DNA topoisomerase 2 beta (Top2ß) was revealed as key mediator of DOX-induced cardiotoxicity, although ROS generation is also an important mechanism. Oxidative stress is also an important issue in MTX-induced cardiotoxicity that is manifested by mitochondrial dysfunction. Studies have demonstrated the relationship between PARP-1 overactivation and cell viability in DOX-treated cardiomyocytes. In reference of MTX, data regarding PARP-1 overactivation as the mechanism responsible for cardiotoxicity is difficult to find. The aim of this study was to evaluate the influence of PARP-1 inhibitor DPQ on DOX- and MTX-mediated cardiotoxicity. Cells were exposed for 24 h to DOX or MTX in the presence or absence of DPQ. Viability, apoptosis, and genotoxicity assays were carried out. Immunofluorescence of phosphorylated histone H2AX was analyzed in H9c2 cells and cardiomyocytes from neonatal rats. Results demonstrated that DPQ co-treatment increases DOX-induced apoptosis in H9c2 cells. DPQ also prevents DOX and MTX-ROS generation in part by increasing SOD and CAT activities. Furthermore, DPQ co-treatment increased the generation of DNA strand breaks by DOX and MTX whilst also inducing phosphorylation of H2AX, MRE11, and ATM in H9c2 cells. Our results demonstrated that as well as increasing DNA damage and inducing apoptotic cell death, DPQ enhances DOX- and MTX-mediated cytotoxicity in H9c2.


Assuntos
Cardiotoxicidade , Doxorrubicina/toxicidade , Isoquinolinas/toxicidade , Mitoxantrona/toxicidade , Piperidinas/toxicidade , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Inibidores da Topoisomerase II/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Miócitos Cardíacos/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA