Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicon ; 53(1): 69-77, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996140

RESUMO

The ability of crude venom and a basic phospholipase A(2) (LmTX-I) from Lachesis muta muta venom to increase the microvascular permeability in rat paw and skin was investigated. Crude venom or LmTX-I were injected subplantarly or intradermally and rat paw oedema and dorsal skin plasma extravasation were measured. Histamine release from rat peritoneal mast cell was also assessed. Crude venom or LmTX-I induced dose-dependent rat paw oedema and dorsal skin plasma extravasation. Venom-induced plasma extravasation was inhibited by the histamine H(1) antagonist mepyramine (6mg/kg), histamine/5-hydroxytriptamine antagonist cyproheptadine (2mg/kg), cyclooxygenase inhibitor indomethacin (5mg/kg), nitric oxide synthesis inhibitor l-NAME (100nmol/site), tachykinin NK(1) antagonist SR140333 (1nmol/site) and bradykinin B(2) receptor antagonist Icatibant (0.6mg/kg). Platelet-activating factor (PAF) antagonist PCA4248 (5mg/kg) had no effect. LmTX-I-induced skin extravasation was inhibited by cyproheptadine, mepyramine, indomethacin and PCA4248, while l-NAME and SR140333 had no effect. Additionally, both Lachesis muta muta venom and LmTX-I concentration-dependently induced histamine release from rat mast cells. In conclusion, Lachesis muta muta venom and LmTX-I increase microvascular permeability by mechanisms involving in vivo mast cell activation and arachidonic acid metabolites. Additionally, crude venom-induced responses also involve substance P, nitric oxide and bradykinin release, whether LmTX-I-induced responses involve PAF.


Assuntos
Venenos de Crotalídeos/toxicidade , Edema/induzido quimicamente , Pé/patologia , Inflamação/induzido quimicamente , Pele/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Óxido Nítrico/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Receptor B2 da Bradicinina/metabolismo , Receptores de Taquicininas/metabolismo , Pele/patologia , Viperidae/fisiologia
2.
Toxicon ; 51(8): 1509-19, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18501940

RESUMO

BmTX-I, an Asp49 phospholipase A(2), was purified from Bothrops moojeni venom after only one chromatographic step using reverse-phase HPLC on mu-Bondapak C-18 column. A molecular mass of 14238.71Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BmTX-I PLA(2) had a sequence of 121 residues of amino acids: DLWQFNKMIK KEVGKLPFPF YGAYGCYCGW GGRGEKPKDG TDRCCFVHDC CYKKLTGCPK WDDRYSYSWK DITIVCGEDL PCEEICECDR AAAVCFYENL GTYNKKYMKH LKPCKKADYP C and pI value 7.84, and showed a high degree of homology with basic Asp49 PLA(2) myotoxins from other Bothrops venoms. BmTX-I presented PLA(2) activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35-45 degrees C. Maximum PLA(2) activity required Ca(2+) and in the presence of Mg(2+), Cd(2+) and Mn(2+) it was reduced in presence or absence of Ca(2+). Crotapotin from Crotalus durissus colillineatus rattlesnake venom has significantly inhibited (P<0.05) the enzymatic activity of BmTX-I. In vitro, the whole venom and BmTX-I caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other bothrops species. In mice, BmTX-I and the whole venom-induced myonecrosis and a systemic interleukin-6 response upon intramuscular injection. Edema-forming activity was also analyzed through injection of the venom and the purified BmTX-I into the subplantar region of the right footpad. Since BmTX-I exert a strong proinflammatory effect; the enzymatic phospholipids hydrolysis might be relevant for these phenomena.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Neurotoxinas/química , Fosfolipases A/química , Sequência de Aminoácidos , Animais , Fracionamento Químico , Galinhas/fisiologia , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/farmacologia , Crotalus/metabolismo , Crotoxina/isolamento & purificação , Crotoxina/farmacologia , Cinética , Masculino , Camundongos , Dados de Sequência Molecular , Bloqueio Neuromuscular , Neurotoxinas/isolamento & purificação , Neurotoxinas/farmacologia , Fosfolipases A/isolamento & purificação , Fosfolipases A/farmacologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Toxicol In Vitro ; 22(1): 240-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17920236

RESUMO

The toxicity of crotoxin, the major toxin of Crotalus durissus terrificus (South American rattlesnake) venom, is mediated by its basic phospholipase A(2) (PLA(2)) subunit. This PLA(2) is non-covalently associated with crotapotin, an acidic, enzymatically inactive subunit of the crotoxin complex. In this work, rabbit antiserum raised against crotapotin purified from Crotalus durissus cascavella venom was tested for its ability to neutralize the neurotoxicity of this venom and its crotoxin in vitro. The ability of this antiserum to inhibit the enzymatic activity of the crotoxin complex and PLA(2) alone was also assessed, and its potency in preventing myotoxicity was compared with that of antisera raised against crotoxin and PLA(2). Antiserum to crotapotin partially neutralized the neuromuscular blockade caused by venom and crotoxin in electrically stimulated mouse phrenic nerve-hemidiaphragm preparations and prevented the venom-induced myotoxicity, but did not inhibit the enzymatic activity of crotoxin and purified PLA(2). In contrast, previous findings showed that antisera against crotoxin and PLA(2) from C. d. cascavella effectively neutralized the neuromuscular blockade and PLA(2) activity of this venom and its crotoxin. The partial neutralization of crotoxin-mediated neurotoxicity by antiserum to crotapotin probably reduced the binding of crotoxin to its receptor following interaction of the antiserum with the crotapotin moiety of the complex.


Assuntos
Antivenenos/farmacologia , Venenos de Crotalídeos/antagonistas & inibidores , Crotoxina/antagonistas & inibidores , Neurotoxinas/antagonistas & inibidores , Animais , Antivenenos/imunologia , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/toxicidade , Crotalus , Crotoxina/imunologia , Crotoxina/toxicidade , Diafragma/efeitos dos fármacos , Diafragma/patologia , Estimulação Elétrica , Técnicas In Vitro , Masculino , Camundongos , Neurotoxinas/imunologia , Neurotoxinas/toxicidade , Fosfolipases A2/imunologia , Ligação Proteica/efeitos dos fármacos , Coelhos
4.
Protein J ; 27(6): 384-91, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18766430

RESUMO

Previous in vitro studies show that Lachesis muta venom and its purified Asp49 phospholipase A(2), named as LmTX-I, display potent neurotoxic and myotoxic activities. Here, an in vivo study was conducted to investigate some pharmacological effects of the venom or its LmTX-I toxin, after intra-muscular injection in tibialis anterior (TA) and following subplantar injection in hind paws of mice. Findings showed that LmTX-I increased plasma creatine kinase activity and produced strong myonecrosis and inflammatory reactions in TA muscle. In addition to these effects, the venom also induced intense local hemorrhage. Pre-treatment of the venom with EDTA (5 mM) significantly inhibited the edema and hemorrhage. Histological examination showed that L. muta venom caused inner dermal layer thickening in the pad hind paw. In addition, there was marked inflammatory cell infiltration, particularly of neutrophils, and hemorrhage. LmTX-I also demonstrated edema-forming activity, which was inhibited by pretreatment with indomethacin.


Assuntos
Venenos de Crotalídeos/toxicidade , Edema/induzido quimicamente , Doenças Musculares/induzido quimicamente , Necrose/induzido quimicamente , Fosfolipases A2/toxicidade , Viperidae , Animais , Creatina Quinase/metabolismo , Edema/patologia , Ácido Edético/farmacologia , Extremidades/patologia , Feminino , Hemorragia/induzido quimicamente , Inflamação/induzido quimicamente , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/patologia , Necrose/patologia
5.
Toxicon ; 49(5): 678-92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17208264

RESUMO

Human envenoming by Lachesis muta muta venom, although infrequent, is rather severe, being characterized by pronounced local tissue damage and systemic dysfunctions. Studies on the pharmacological actions of L. m. muta venom are relatively scant and the direct actions of the crude venom and its purified phospholipase A(2) (PLA(2)) have not been addressed using in vitro models. In this work, we investigated the cytotoxicity of L. m. muta venom and its purified PLA(2) isoform LmTX-I in cultured Madin-Darby canine kidney (MDCK) and in a skeletal muscle (C2C12) cell lines. As revealed by neutral red dye uptake assay, the crude venom (10 or 100 microg/ml) induced a significant decrease in cell viability of MDCK cells. LmTX-I at the concentrations tested (70-270 microg/ml or 5-20 microM) displayed no cytotoxicity in both MDCK and C2C12 cell lines. Morphometric analysis of Feulgen nuclear reaction revealed a significant increase in chromatin condensation (pyknosis), apparent reduction in the number of mitotic nuclei and nuclear fragmentation of some MDCK cells after incubation with L. m. muta venom. Monolayer exposure to crude venom resulted in morphological changes as assessed by scanning electron microscopy. The staining with TRITC-labelled phalloidin showed a marked disarray of the actin stress fiber following L. m. muta venom exposure. In contrast, LmTX-I had no effect on nucleus and cell morphologies as well as on stress fiber organization. These results indicate that L. m. muta venom exerts toxic effects on cultured MDCK cells. The LmTX-I probably does not contribute per se to the direct venom cytotoxicity, these effects are mediated by metalloproteinases/disintegrins and other components of the venom.


Assuntos
Venenos de Crotalídeos/toxicidade , Fosfolipases A/toxicidade , Viperidae , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/ultraestrutura , Cães , Microscopia Eletrônica de Varredura , Fosfolipases A2 , Testes de Toxicidade
6.
Protein J ; 26(3): 193-201, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17203390

RESUMO

A new lectin (BvcL) from seeds of a primitive Brazilian Caesalpinoideae, the Bauhinia variegata candida was purified and biochemical characterized. BvcL was isolated by gel filtration chromatography on Sephadex G75 and affinity chromatography on immobilized D: -lactose column. SDS-PAGE showed that BvcL under non-reducing condition presents two bands of 68 and 32 kDa and a single band of 32 kDa in reducing condition. However, only one band was seen in native PAGE. The hemagglutination activity of BvcL was not specific for any human blood group trypsin-treated erythrocytes. Carbohydrate inhibition analysis indicated that BvcL is inhibited by lactose, galactose, galactosamine and other galactoside derivates. Amino acid analysis revealed a large content of Ser, Gly, Thr, Asp and Glu and low concentrations of Met, Cys and His. Intrinsic fluorescence of BvcL was not significantly affected by sugar binding galactose; and aromatic-region CD is unusually high for plant lectins. The N-terminal amino acid sequence of 17 residues showed 90% sequential homology to galactose-specific legume lectins of the subfamily Caesalpinoideae.


Assuntos
Bauhinia/química , Galectinas/química , Galectinas/isolamento & purificação , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Sementes/química , Sequência de Aminoácidos , Animais , Bauhinia/classificação , Eletroforese em Gel Bidimensional , Galectinas/metabolismo , Humanos , Dados de Sequência Molecular , Lectinas de Plantas/metabolismo , Coelhos , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Biochim Biophys Acta ; 1726(1): 75-86, 2005 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16005152

RESUMO

Two basic phospholipase A2 (PLA2) isoforms were isolated from Lachesis muta muta snake venom and partially characterized. The venom was fractionated by molecular exclusion chromatography in ammonium bicarbonate buffer followed by reverse-phase HPLC on a C-18 mu-Bondapack column and RP-HPLC on a C-8 column. From liquid chromatography-electrospray ionization/mass spectrometry, the molecular mass of the two isoforms LmTX-I and LmTX-II was respectively measured as 14,245.4 and 14,186.2 Da. The pI was respectively estimated to be 8.7 and 8.6 for LmTX-I and LmTX-II, as determined by two-dimensional electrophoresis. The two proteins were sequenced and differentiated from each other by a single amino acid substitution, Arg65 (LmTX-I)-->Pro65 (LmTX-II). The amino acid sequence showed a high degree of homology between PLA2 isoforms from Lachesis muta muta and other PLA2 snake venoms. LmTX-I and LmTX-II had PLA2 activity in the presence of a synthetic substrate and showed a minimum sigmoidal behaviour; with maximal activity at pH 8.0 and 35-45 degrees C. Full PLA2 activity required Ca2+ and was respectively inhibited by Cu2+ and Zn2+ in the presence and absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom significantly inhibited (P<0.05) the enzymatic activity of LmTX-I, suggesting that the binding site for crotapotin in this PLA2 was similar to another in the basic PLA2 of the crotoxin complex from C. durissus cascavella venom.


Assuntos
Venenos de Crotalídeos/enzimologia , Fosfolipases A/química , Fosfolipases A/isolamento & purificação , Viperidae , Sequência de Aminoácidos , Animais , Sequência de Bases , Fracionamento Químico , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Crotoxina/metabolismo , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Metais Pesados/metabolismo , Dados de Sequência Molecular , Fosfolipases A/genética , Fosfolipases A/metabolismo , Fosfolipases A2 , Análise de Sequência de DNA
8.
Toxicon ; 47(7): 759-65, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16626776

RESUMO

The whole venom of Lachesis muta muta is preponderantly neurotoxic but moderately myotoxic on the chick biventer cervicis preparation (BCp). We have now examined these toxic activities of a basic phospholipase A(2), LmTX-I, isolated from the whole venom. LmTX-I caused a significant concentration-dependent neuromuscular blockade in the BCp. The time to produce 50% neuromuscular blockade was 14.7+/-0.75 min (30 microg/ml), 23.6+/-0.9 min (10 microg/ml), 34+/-1.7 min (2.5 microg/ml) and 39.2+/-3.6 min (1 microg/ml), (n=5/concentration; p<0.05). Complete blockade with all tested concentrations was not accompanied by inhibition of the response to ACh. At the highest concentration, LmTX-I (30 microg/ml) significantly reduced contractures elicited by exogenous KCl (20mM), increased the release of creatine kinase (1542.5+/-183.9 IU/L vs 442.7+/-39.8 IU/L for controls after 120 min, p<0.05), and induced the appearance of degenerating muscle fibers ( approximately 15%). Quantification of myonecrosis indicated 14.8+/-0.8 and 2.0+/-0.4%, with 30 and 10 microg/mlvenom concentration, respectively, against 1.07+/-0.4% for control preparations. The findings indicate that the basic PLA(2) present on venom from L. m. muta (LmTX-I) possesses a dominant neurotoxic action on isolated chick nerve-muscle preparations, whereas myotoxicity was mainly observed at the highest concentration used (30 microg/ml). These effects of LmTX-I closely reproduce the effects of the whole venom of L. m. muta in chick neuromuscular preparations.


Assuntos
Venenos de Crotalídeos/enzimologia , Fosfolipases A/isolamento & purificação , Fosfolipases A/farmacologia , Viperidae/fisiologia , Acetilcolina , Animais , Galinhas , Venenos de Crotalídeos/química , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Bloqueadores Neuromusculares/química , Bloqueadores Neuromusculares/isolamento & purificação , Bloqueadores Neuromusculares/farmacologia , Fosfolipases A/química , Fosfolipases A2 , Cloreto de Potássio
9.
Toxicon ; 46(2): 222-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15970302

RESUMO

Lachesis genus is one of the less studied among others from Viperidae's genera, mainly due to difficulties in obtaining the venom. Accidents by Lachesis snakes cause severe envenoming syndrome, eventually leading victims to shock. This work is part of a comprehensive study aimed at studying the venom and its effects. Herein the neurotoxicity and myotoxicity of L. muta muta venom were investigated on mouse phrenic nerve-diaphragm (PNDp) and chick biventer cervicis (BCp) preparations. For both preparations the time required to venom produces 50% neuromuscular blockade was indirectly concentration-dependent, being for PNDp: 117.6+/-6.5 min (20 microg/ml), 70.1+/-8.6 min (50 microg/ml) and 43.6+/-3.8 min (100 microg/ml), and for BCp: 28+/-1.8 min (50 microg/ml), 30.4+/-2.3 min (10 microg/ml), 50.4+/-4.3 min (5 microg/ml) and 75.2+/-0.7 min (2 microg/ml), (n=5/dose). In BCp, a venom dose of 50 microg/ml significantly reduced contractures elicited by exogenous acetylcholine (55 microM) and KCl (20 mM), as well as increased the release of creatine kinase (442.7+/-39.8 IU/l in controls vs 4322.6+/-395.2 IU/l, after 120 min of venom incubation (P<0.05). Quantification of myonecrosis in BCp indicated the doses 50 and 10 microg/ml as significantly myotoxic affecting 59.7+/-6.2%, and 20.8+/-1.2% of fibers, respectively, whereas 5 and 2 microg/ml that affected 13.5+/-0.8% and 5.4+/-0.6% of fibers, were considered weakly- and non-myotoxic, respectively. We concluded that there are neurotoxins present in the venom, the concentration of which governs its pre- (if low) or postsynaptic (if high) activity. Since myotoxicity in the avian preparation is negligible at lower venom doses, but not neurotoxicity, we suggest that this effect may contribute minimum to the venom neurotoxic effect. The BCp is more sensible than PNDp to Lachesis m. muta venom.


Assuntos
Venenos de Crotalídeos/toxicidade , Diafragma/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Viperidae , Análise de Variância , Animais , Galinhas , Creatina Quinase/metabolismo , Venenos de Crotalídeos/enzimologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Fosfolipases A/metabolismo
10.
Biomed Res Int ; 2013: 903292, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058917

RESUMO

We report a rapid purification method using one-step chromatography of SVSP Rhombeobin (LMR-47) from Lachesis muta rhombeata venom and its procoagulant activities and effects on platelet aggregation. The venom was fractionated by a single chromatographic step in RP-HPLC on a C8 Discovery BIO Wide Pore, showing high degree of molecular homogeneity with molecular mass of 47035.49 Da. Rhombeobin showed amidolytic activity upon BA ρ NA, with a broad optimum pH (7-10) and was stable in solution up to 60°C. The amidolytic activity was inhibited by serine proteinase inhibitors and reducing agents, but not chelating agents. Rhombeobin showed high coagulant activity on mice plasma and bovine fibrinogen. The deduced amino acid sequence of Rhombeobin showed homology with other SVSPs, especially with LM-TL (L. m. muta) and Gyroxin (C. d. terrificus). Rhombeobin acts, in vitro, as a strong procoagulant enzyme on mice citrated plasma, shortening the APTT and PT tests in adose-dependent manner. The protein showed, "ex vivo", a strong defibrinogenating effect with 1 µg/animal. Lower doses activated the intrinsic and extrinsic coagulation pathways and impaired the platelet aggregation induced by ADP. Thus, this is the first report of a venom component that produces a venom-induced consumptive coagulopathy (VICC).


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/química , Fibrinogênio/metabolismo , Cinética , Masculino , Camundongos , Dados de Sequência Molecular , Peso Molecular , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Serina Proteases/química , Espectrometria de Massas por Ionização por Electrospray , Viperidae/metabolismo
11.
Toxicon ; 60(5): 773-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750534

RESUMO

A basic phospholipase A2 (LmrTX) isoform was isolated from Lachesis muta rhombeata snake venom and partially characterized. The venom was fractionated by molecular exclusion chromatography in ammonium bicarbonate buffer followed by reverse-phase HPLC on a C-5 Discovery® Bio Wide column. From liquid chromatography-electrospray ionization/mass spectrometry, the molecular mass of LmrTX was measured as 14.277.50 Da. The amino acid sequence showed a high degree of homology between PLA2 LmrTX from L. muta rhombeata and other PLA2 from snake venoms, like CB1 and CB2 from Crotalus durissus terrificus; LmTX-I and LmTX-II from Lachesis muta muta. LmrTX had PLA2 activity in the presence of a synthetic substrate and alkylation of histidine residues significantly inhibited (P < 0.05) the enzymatic activity of LmrTX and its anticoagulant and antithrombotic activity. In this study, we examined the ability of the LmrTX in altering thrombus formation in living mouse, using a photochemically induced arterial thrombosis model. The control animals that did not receive protein injection showed a normal occlusion time, which was around 57 ± 7.8 min. LmrTX, the PLA2 from L. muta rhombeata venom, caused a change in the occlusion time to 99 ± 10 min with doses of 7.5 µg/mice. Additionally, LmrTX showed the anticoagulant activity in vitro and ex vivo and prolonging the time aggregation in wash platelet induced by ADP and Thrombin.


Assuntos
Venenos de Crotalídeos/enzimologia , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Trombose/induzido quimicamente , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA