Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 167(11): 2203-2212, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920983

RESUMO

Dengue virus (DENV), a member of the genus Flavivirus, family Flaviviridae, is the most widespread viral pathogen transmitted to humans by mosquitoes. Despite the increased incidence of DENV infection, there are no antiviral drugs available for treatment or prevention. Phenothiazines are heterocyclic compounds with various pharmacological properties that are very adaptable for drug repurposing. In the present report, we analyzed the antiviral activity against DENV and the related Zika virus (ZIKV) of trifluoperazine (TFP), a phenothiazine derivative in clinical use as an antipsychotic and antiemetic agent. TFP exhibited dose-dependent inhibitory activity against the four DENV serotypes and ZIKV in monkey Vero cells at non-cytotoxic concentrations with 50% effective concentration values in the range 1.6-6.4 µM. A similar level of antiviral efficacy was exhibited by TFP against flavivirus infection in the human cell lines A549 and HepG2. Mechanistic studies, performed using time-dependent infectivity assays, real-time RT-PCR, Western blot, and immunofluorescence techniques, indicated that uncoating of the virus during penetration into the cell was the main target for TFP in infected cells, but the compound also exerted a minor effect on a late stage of the virus multiplication cycle. This study demonstrates that TFP, a pharmacologically active phenothiazine, is a selective inhibitor of DENV multiplication in cell culture. Our findings open perspectives for the repositioning of phenothiazines like TFP with a wide spectrum of antiviral efficacy as potential agents for the control of pathogenic flaviviruses.


Assuntos
Antieméticos , Antipsicóticos , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Dengue/tratamento farmacológico , Humanos , Fenotiazinas/farmacologia , Fenotiazinas/uso terapêutico , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Células Vero , Replicação Viral
2.
Bioorg Med Chem Lett ; 29(4): 556-559, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30612844

RESUMO

In this work, several ribavirin analogues were synthesized and incorporated into a multivalent arrangement. Both were subsequently modified by the addition of polyhydroxylated residues. Their antiviral activity was tested against Junín virus, etiological agent responsible of Argentine hemorrhagic fever. Some compounds inhibited Junín virus in the range of 13.2-389.1 µM. Two modified ribavirin analogues presented an effective concentration comparable to ribavirin but with a higher selectivity index.


Assuntos
Antivirais/farmacologia , Vírus Junin/efeitos dos fármacos , Ribavirina/análogos & derivados , Células A549 , Animais , Chlorocebus aethiops , Humanos , Células Vero
3.
J Med Virol ; 90(5): 819-827, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315647

RESUMO

The aim of this study was to investigate the effect of A771726, the active metabolite of leflunomide, (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad against the infection with Junín virus (JUNV), agent of Argentine hemorrhagic fever (AHF). The treatment with non-cytotoxic concentrations of A771726 of Vero and A549 cells infected with JUNV inhibited virus replication in a dose-dependent manner, as determined by virus yield reduction assay. The antiviral effectiveness of A771726 was not importantly affected by the multiplicity of infection and the virus strain. Moreover, the combination of A771726 and ribavirin had a significantly more potent antiviral activity than each single drug treatment. Mechanistic studies showed that the main action of A771726 is exerted before 6 h of JUNV infection. Accordingly, inhibition of viral RNA synthesis was detected in treated infected cells by real time RT-PCR. The exogenous addition of uridine or orotic acid produced a partial reversal of the inhibitory effect of A771726 on infective virus production whereas a total reversion was detected on JUNV RNA synthesis, probably by restoration of the enzymatic activity of dihydroorotate dehydrogenase (DHODH) and the intracellular pyrimidine pools. In conclusion, these results suggest that the antiviral target would be viral RNA synthesis through pyrimidine depletion, but any other effect of the compound on JUNV infection cannot be excluded. This study opens the possibility of the therapeutic application of a wide spectrum host-targeted compound alone or in combination with ribavirin to combat AHF as well as other human pathogenic arenaviruses.


Assuntos
Compostos de Anilina/farmacologia , Antivirais/farmacologia , Hidroxibutiratos/farmacologia , Vírus Junin/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Chlorocebus aethiops , Crotonatos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Nitrilas , RNA Viral/biossíntese , Ribavirina/farmacologia , Toluidinas , Células Vero , Carga Viral
4.
J Med Virol ; 88(7): 1120-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26694200

RESUMO

The λ-carrageenan (λ-car) is a potent and selective inhibitor of dengue virus (DENV) infection targeted to virus adsorption and internalization, due to the structural similarities with the mammalian cell receptor heparan sulfate. To further characterize the antiviral activity of λ-car, the selection and the phenotypic and genomic features of λ-car resistant DENV-2 variants are studied here in comparison to control virus. Resistant variants were rapidly selected in Vero cells after three passages in presence of the drug. No difference was detected in the growth profiles in Vero and C6/36 cells between resistant and control viruses. By contrast, the kinetics of adsorption and internalization of resistant variants in Vero cells was significantly diminished whereas entry to C6/36 cells was unaffected. By plaque purification and sequence analysis of the population, two types of resistant clones were found: some clones presented two mutations in E protein, K126E, and F422L; but other equally λ-car resistant clones had no mutations in E. Furthermore, no mutations were found in other viral proteins like prM, C, or NS1. The genomic disparity in E protein was also associated to differences in phenotype stability. The stable genomic resistance here described provides information about determinants in E protein involved in receptor binding and membrane fusion for uncoating.


Assuntos
Carragenina/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Farmacorresistência Viral/genética , Mutação , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Vírus da Dengue/fisiologia , Genoma Viral , Genótipo , Fenótipo , Células Vero , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
5.
Arch Virol ; 161(7): 1993-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27101075

RESUMO

Twelve polyhydroxylated sulfated steroids synthesized from a 5α-cholestane skeleton with different substitutions in C-2, C-3 and C-6 were evaluated for cytotoxicity and antiviral activity against herpes simplex virus (HSV) by a virus plaque reduction assay. Four compounds elicited a selective inhibitory effect against HSV. The disodium salt of 2ß,3α-dihydroxy-6E-hydroximine-5α-cholestane-2,3-disulfate, named compound 7, was the most effective inhibitor of HSV-1, HSV-2 and pseudorabies virus (PrV) strains, including acyclovir-resistant variants, in human and monkey cell lines. Preliminary mechanistic studies demonstrated that compound 7 did not affect the initial steps of virus entry but inhibited a subsequent event in the infection process of HSV.


Assuntos
Antivirais/farmacologia , Colestanos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Esteroides/farmacologia , Animais , Antivirais/química , Linhagem Celular , Colestanos/química , Herpes Genital/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Humanos , Estrutura Molecular , Esteroides/química , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos
6.
J Biomed Sci ; 22: 29, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25908170

RESUMO

BACKGROUND: Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of the most active DENV-2 inhibitors was further characterized. RESULTS: The compound 10-allyl-7-chloro-9(10H)-acridone, designated 3b, was active to inhibit the in vitro infection of Vero cells with the four DENV serotypes, with effective concentration 50% (EC50) values in the range 12.5-27.1 µM, as determined by virus yield inhibition assays. The compound was also effective in human HeLa cells. No cytotoxicity was detected at 3b concentrations up to 1000 µM. Mechanistic studies demonstrated that virus entry into the host cell was not affected, whereas viral RNA synthesis was strongly inhibited, as quantified by real time RT-PCR. The addition of exogenous guanosine together with 3b rescued only partially the infectivity of DENV-2. CONCLUSIONS: The acridone derivative 3b selectively inhibits the infection of Vero cells with the four DENV serotypes without a direct interaction with the host cell or the virion but interfering specifically with the intracellular virus multiplication. The mode of antiviral action for this acridone apparently involves the cellular enzyme inosine-monophospahe dehydrogenase together with another still unidentified target related to DENV RNA synthesis.


Assuntos
Acridonas/farmacologia , Compostos Alílicos/farmacologia , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , RNA Viral/metabolismo
7.
Int J Biol Macromol ; 258(Pt 1): 128824, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103665

RESUMO

Herpes simplex viruses (HSVs) have an affinity for heparan sulfate proteoglycans on cell surfaces, which is a determinant for virus entry. Herein, several sulfated galactans that mimic the active domain of the entry receptor were employed to prevent HSV infection. They were produced from Grateloupia indica using chlorosulfonic acid-pyridine (ClSO3H.Py)/N,N-dimethylformamide reagent (fraction G-402), SO3.Py/DMF reagent (G-403), or by aqueous extraction (G-401). These galactans contained varied molecular masses (33-55 kDa), and sulfate contents (12-20 %), and have different antiviral activities. Especially, the galactan (G-402) generated by using ClSO3H.Py/DMF, a novel reagent, exhibited the highest level of antiviral activity (EC50 = 0.36 µg/mL) compared to G-403 (EC50 = 15.6 µg/mL) and G-401 (EC50 = 17.9 µg/mL). This most active sulfated galactan possessed a linear chain containing ß-(1 â†’ 3)- and α-(1 â†’ 4)-linked Galp units with sulfate group at the O-2/4/6 and O-2/3/6 positions, respectively. The HSV-1 and HSV-2 strains were specifically inhibited by this novel 33 ± 15 kDa galactan, which also blocked the virus from entering the host cell. These results highlight the significant potential of this sulfated galactan for antiviral research and drug development. Additionally, the reagent used for the effective conversion of galactan hydroxy groups to sulfate during extraction may also be useful for the chemical transformation of other natural products.


Assuntos
Herpesvirus Humano 1 , Rodófitas , Galactanos/química , Rodófitas/química , Sulfatos/farmacologia , Antivirais/farmacologia
8.
Int J Biol Macromol ; 265(Pt 2): 131023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513897

RESUMO

The interactions between bovine serum albumin (BSA) and mycophenolic acid (MPA) were investigated in silico through molecular docking and in vitro, using fluorescence spectroscopy. Dynamic light scattering and scanning electron microscopy were used to figure out the structure of MPA-Complex (MPA-C). The binding affinity between MPA and BSA was determined, yielding a Kd value of (12.0 ± 0.7) µM, and establishing a distance of 17 Å between the BSA and MPA molecules. The presence of MPA prompted protein aggregation, leading to the formation of MPA-C. The cytotoxicity of MPA-C and its ability to fight Junín virus (JUNV) were tested in A549 and Vero cell lines. It was found that treating infected cells with MPA-C decreased the JUNV yield and was more effective than free MPA in both cell line models for prolonged time treatments. Our results represent the first report of the antiviral activity of this type of BSA-MPA complex against JUNV, as assessed in cell culture model systems. MPA-C shows promise as a candidate for drug formulation against human pathogenic arenaviruses.


Assuntos
Vírus Junin , Soroalbumina Bovina , Humanos , Ácido Micofenólico , Simulação de Acoplamento Molecular , Replicação Viral , Antivirais/farmacologia
9.
Expert Opin Drug Discov ; 17(4): 397-412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098849

RESUMO

INTRODUCTION: Dengue virus (DENV) is the causative agent of the most prevalent human disease transmitted by mosquitoes in tropical and subtropical regions worldwide. At present, no antiviral drug is available and the difficulties to develop highly protective vaccines against the four DENV serotypes maintain the requirement of effective options for dengue chemotherapy. AREAS COVERED: The availability of animal models that reproduce human disease is a very valuable tool for the preclinical evaluation of potential antivirals. Here, the main murine models of dengue infection are described, including immunocompetent wild-type mice, immunocompromised mice deficient in diverse components of the interferon (IFN) pathway and humanized mice. The main findings in antiviral testing of DENV inhibitory compounds in murine models are also presented. EXPERT OPINION: At present, there is no murine model that fully recapitulates human disease. However, immunocompromised mice deficient in IFN-α/ß and -γ receptors, with their limitations, have shown to be the most suitable system for antiviral preclinical testing. In fact, the AG129 mouse model allowed the identification of celgosivir, an inhibitor of cellular glucosidases, as a promising option for DENV therapy. However, clinical trials still were not successful, emphasizing the difficulties in the transition from preclinical testing to human treatment.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/prevenção & controle , Modelos Animais de Doenças , Descoberta de Drogas , Humanos , Camundongos
10.
J Gen Virol ; 92(Pt 6): 1332-1342, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325483

RESUMO

The antiviral activity against dengue virus-2 (DENV-2) of carrageenans reported here has shown a differential susceptibility of C6/36 HT and Vero cells, taken as models of mosquito and mammalian cells, depending on the structural class of polysaccharides: all polysaccharides blocked DENV-2 infection in monkey Vero cells, but only iota-carrageenans were virus inhibitors in mosquito cells. However, iota-carrageenans were less effective in mosquito cells in comparison with mammalian cells with effective concentration 50 % (EC(50)) values in C6/36 HT cells 4.9-17.5-fold higher than in Vero cells, as determined by virus yield reduction assay. The mode of action of iota-carrageenan in both cell types was strikingly different: in Vero cells the inhibitory activity was exerted only at the initiation of the cycle, affecting virion binding, whereas in mosquito cells DENV-2 adsorption was not affected and comparable levels of inhibition were obtained if the compound was added to cells together with the virus, after 8 h of infection or by cell pre-treatment before infection. Furthermore, iota-carrageenans induced a subtle alteration in mosquito cells, detected by cell proliferation and protein synthesis analyses, suggesting that a probable cellular target may be responsible for the refractory state of mosquito cells to DENV-2 infection produced by this class of polysulfates. The failure of iota-carrageenan to block DENV-2 adsorption to mosquito cells appeared to be related to the low presence of adequate heparan sulfate (HS) in C6/36 HT cell surface and is indicative of a differential participation of HS residues for DENV-2 entry in both types of cells.


Assuntos
Carragenina/farmacologia , Vírus da Dengue/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Culicidae , Dengue/virologia , Vírus da Dengue/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
11.
Sex Transm Dis ; 38(6): 555-61, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22256337

RESUMO

BACKGROUND: Antiviral therapy against herpes simplex virus based on sulfated polysaccharides, like carrageenans, represents a new alternative for genital herpes infections treatment and arises the concern about the appearance of resistant viral populations. METHODS: We characterized the F strain of herpes simplex virus-1 passaged in the presence of a natural carrageenan isolated from the red seaweed Gigartina skottbergii in view of the virulence for mice of isolated viral clones. RESULTS: Viral clones (syn14-1 and syn17-2) showed a syncytial phenotype and a mild resistance to carrageenan, heparin, acyclovir, and brivudine. Both clones were avirulent for BALB/c mice when inoculated intravaginally, whereas F strain produced high mortality. Attenuation correlated with low levels of TNF-[alpha], interleukin-6, and IFN-[gamma] in vaginal lavages although virus titers were similar to those obtained for F strain. On the contrary, they showed a marked virulence when inoculated intranasally leading to a generalized spreading of virus. CONCLUSIONS: Results confirm the hypothesis that selection of herpes simplex virus-1 with a carrageenan in vitro leads to the emergence of variants with a differential virulence when compared to the original virus. This finding should be addressed when an antiviral therapy against genital herpes infection employing a natural carrageenan is under consideration.


Assuntos
Antivirais/farmacologia , Carragenina/farmacologia , Variação Genética , Células Gigantes/fisiologia , Herpesvirus Humano 1/patogenicidade , Seleção Genética , Animais , Chlorocebus aethiops , Feminino , Herpes Genital/patologia , Herpes Genital/virologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Rodófitas/química , Alga Marinha/química , Células Vero , Virulência
12.
Carbohydr Polym ; 256: 117555, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483058

RESUMO

Limited options for the treatments of diseases triggered through viral infections revealed the quest for novel antiviral drugs. Polysaccharide sulfates owing to their unique mode of action are prominent antiviral drug candidates. Herein, the arabinoxylan of Plantago ovata seed husk was simultaneously extracted and chemically sulfated using sulphur trioxide-pyridine reagent in N,N-dimethylformamide solvent (SO3⋅Py/DMF). Thus, three arabinoxylan sulfates (IS1201-IS1203) holding variable degrees of sulfation (DS: 0.1-0.9), molar masses (18.4-31.3 kDa) and glycosyl makeup (Ara: Xyl::10-19:81-90; molar ratio) were produced and then characterized. According to the results, these polymers displayed anti-herpes simplex virus type 1 activity and their potency depends upon DS. The utmost effective compound (IS1203, IC50: 2.9 µg mL-1) was a 18.4 kDa arabinoxylan possessing sulfate groups at O-3 and O-2,3 positions of xylopyranosyl (Xylp), and O-5 of arabinofuranosyl (Araf) residues. Besides, this polymer showed no cytotoxicity at concentration up to 1000 µg mL-1. Given that polysaccharide sulfates have antiviral activities, synthesis of new molecules possessing diverse structures will be a useful addition to the arsenal of antivirals.


Assuntos
Antivirais/farmacologia , Plantago/química , Polissacarídeos/química , Sulfatos/química , Xilanos/química , Animais , Chlorocebus aethiops , Glicosídeos/química , Concentração Inibidora 50 , Metilação , Peso Molecular , Polímeros/química , Sementes/química , Simplexvirus/efeitos dos fármacos , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Células Vero
13.
Cell Microbiol ; 11(10): 1533-49, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19523154

RESUMO

The entry of two dengue virus (DENV) serotypes into Vero cells was analysed using biochemical inhibitors, dominant negative mutants of cellular proteins involved in endocytic pathways, fluorescence microscopy and infectivity determinations. By treatment with dansylcadaverine and chlorpromazine and overexpression of a dominant negative form of the Eps15 protein, a clathrin-mediated endocytosis for productive DENV-1 internalization into Vero cells was demonstrated whereas the infectious entry of DENV-2 in the same cell system was independent of clathrin. Treatment with the inhibitors nystatin and methyl-beta-cyclodextrin, as well as transfection of Vero cells with dominant negative caveolin-1, had no effect on DENV-2 virus infection. It was also shown, by using the K44A mutant and the inhibitor dynasore, that dynamin was required for DENV-2 entry. Consequently, the infectious entry of DENV-2 into Vero cells occurs by a non-classical endocytic pathway independent of clathrin, caveolae and lipid rafts, but dependent on dynamin. By contrast, DENV-2 entry into A549 cells was clathrin-dependent, as previously reported in HeLa, C6/36 and BS-C-1 cells. Our results conclusively show, for the first time, a differential mode of infective entry for DENV-1 and DENV-2 into a common host cell, Vero cells, as well as alternative entry pathways for a given serotype, DENV-2, into different types of cells.


Assuntos
Vírus da Dengue/fisiologia , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Clatrina/metabolismo , Vírus da Dengue/patogenicidade , Dinaminas/metabolismo , Endocitose , Humanos
14.
Virus Res ; 290: 198150, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866533

RESUMO

This study demonstrated that the λ-carrageenan is a potent and selective inhibitor of the primary infection of human myeloid U937 and K562 cells with the four DENV serotypes, achieving a higher than 99 % reduction in virus production at the highest tested concentration of 20 µg/mL, without affecting cell viability at concentrations up to 1000 µg/mL. Since antibody-dependent enhancement (ADE) is thought to play a main role in the aggravation of severe DENV disease, we also evaluated the activity of carrageenan against ADE of DENV infection. The λ-carrageenan was also effective to block the antibody dependent infection mediated by Fcγ-RII in both cell lines, causing 96-99 % inhibition in virus production from cells infected with immune complexes of DENV-2 and DENV-3. Moreover, the inhibitory effectiveness of carrageenan was similar against prM-mediated ADE or E-mediated ADE. Mechanistic studies indicated that DENV-2 entry is the main antiviral target for carrageenan in DENV or DENV-Ab infected human myeloid cells since a strong inhibitory effect was observed when the carrageenan was present only during adsorption at 4 °C or internalization at 37 °C, whereas the infection was not altered when the compound was added after virus internalization. Thus, our findings have shown that carrageenan may be considered an interesting antiviral agent able to block DENV entry during both primary and antibody-dependent infection of human myeloid cells.


Assuntos
Anticorpos Facilitadores/efeitos dos fármacos , Carragenina/farmacologia , Vírus da Dengue/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Células Mieloides/virologia , Internalização do Vírus/efeitos dos fármacos , Anticorpos Antivirais/farmacologia , Complexo Antígeno-Anticorpo/efeitos dos fármacos , Reações Cruzadas , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Humanos , Células K562 , Receptores de IgG/genética , Células U937 , Replicação Viral/efeitos dos fármacos
15.
Front Microbiol ; 11: 1558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774331

RESUMO

Zika virus (ZIKV) is an enveloped positive stranded RNA virus belonging to the genus Flavivirus in the family Flaviviridae that emerged in recent decades causing pandemic outbreaks of human infections occasionally associated with severe neurological disorders in adults and newborns. The intracellular steps of flavivirus multiplication are associated to cellular membranes and their bound organelles leading to an extensive host cell reorganization. Importantly, the association of organelle dysfunction with diseases caused by several human viruses has been widely reported in recent studies. With the aim to increase the knowledge about the impact of ZIKV infection on the host cell functions, the present study was focused on the evaluation of the reorganization of three cell components, promyelocytic leukemia nuclear bodies (PML-NBs), mitochondria, and lipid droplets (LDs). Relevant human cell lines including neural progenitor cells (NPCs), hepatic Huh-7, and retinal pigment epithelial (RPE) cells were infected with the Argentina INEVH116141 ZIKV strain and the organelle alterations were studied by using fluorescent cell imaging analysis. Our results have shown that these three organelles are targeted and structurally modified during ZIKV infection. Considering the nuclear reorganization, the analysis by confocal microscopy of infected cells showed a significantly reduced number of PML-NBs in comparison to uninfected cells. Moreover, a mitochondrial morphodynamic perturbation with an increased fragmentation and the loss of mitochondrial membrane potential was observed in ZIKV infected RPE cells. Regarding lipid structures, a decrease in the number and volume of LDs was observed in ZIKV infected cells. Given the involvement of these organelles in host defense processes, the reported perturbations may be related to enhanced virus replication through protection from innate immunity. The understanding of the cellular remodeling will enable the design of new host-targeted antiviral strategies.

17.
Nat Neurosci ; 23(8): 939-951, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690969

RESUMO

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Replicação Viral , Zika virus/metabolismo , Animais , Chlorocebus aethiops , Células Hep G2 , Humanos , Células Vero , Infecção por Zika virus/metabolismo
18.
Virus Res ; 143(1): 106-13, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19463727

RESUMO

Our previous studies reported the inhibitory action against arenaviruses of antiretroviral zinc finger-reactive compounds provided by the National Cancer Institute (USA). These compounds were able to inactivate virions as well as to reduce virus yields from infected cells. Here, the inactivation of the arenavirus Junín (JUNV), agent of Argentine hemorrhagic fever, by the aromatic disulfide NSC20625 was analyzed. The treatment of purified JUNV with this compound eliminated infectivity apparently through irreversible modifications in the matrix Z protein detected by: (a) alterations in the electrophoretic migration profile of Z under non-reducing conditions; (b) an electrodense labeling in the internal layer beneath the envelope and around the matrix Z protein, in negatively stained preparations; (c) changes in the subcellular localization of Z in cells transfected with a recombinant fusion protein JUNVZ-eGFP. The infection of Vero cells with JUNV inactivated particles was blocked at the uncoating of viral nucleocapsid from endosomes, providing new evidence for a functional role of Z in this stage of arenavirus cycle. Furthermore, the inactivated JUNV particles retained the immunoreactivity of the surface glycoprotein GP1 suggesting that this disulfide may be useful in the pursuit of an inactivating agent to obtain a vaccine antigen or diagnostic tool.


Assuntos
Infecções por Arenaviridae/tratamento farmacológico , Compostos Azo/farmacologia , Dissulfetos/farmacologia , Guanidinas/farmacologia , Vírus Junin/efeitos dos fármacos , Vírion/efeitos dos fármacos , Dedos de Zinco , Animais , Fármacos Anti-HIV/farmacologia , Infecções por Arenaviridae/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Chlorocebus aethiops , Proteínas de Fluorescência Verde , Vírus Junin/genética , Microscopia Eletrônica de Transmissão , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Células Vero , Vírion/ultraestrutura , Inativação de Vírus
19.
Carbohydr Res ; 480: 61-66, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176191

RESUMO

Herein we describe the synthesis of imidazo[2,1-b][1,3,4]thiadiazoles from carbohydrates with D-ribo and D-xylo configuration. The antiviral activity of these compounds was tested against Junín virus (the etiological agent of Argentine hemorrhagic fever). The p-chlorophenyl derivatives showed antiviral activity in a range of micromolar concentration.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Ribose/química , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Xilose/química , Antivirais/química , Técnicas de Química Sintética , Vírus Junin/efeitos dos fármacos , Tiadiazóis/química
20.
Carbohydr Res ; 478: 18-24, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31048118

RESUMO

The brown seaweed Scytosiphon lomentaria produces moderate amounts of fucoidans. By cetrimide fractionation, typical heavily sulfated galactofucans are obtained, with no major signs of chemical heterogeneity, together with fractions with higher proportions of xylose, mannose and uronic acids. Anyway, fucose is the most important monosaccharide in most of the subfractions of the subsequent extracts. The fucan moieties appear to be mostly as 3-linked α-l-fucopyranosyl units, with several patterns of sulfate and branching. Galactose is mostly 6-linked, whereas mannose appears to be 2-linked, and xylose appears mostly as terminal stubs. Small amounts of 2-O-acetylated fucose units appear. A high and selective antiviral activity against HSV-1 and HSV-2 was determined for the galactofucan fractions whereas the uronofucoidans were inactive.


Assuntos
Antivirais/farmacologia , Fucose/farmacologia , Galactose/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Polissacarídeos/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Configuração de Carboidratos , Fucose/química , Fucose/isolamento & purificação , Galactose/química , Galactose/isolamento & purificação , Testes de Sensibilidade Microbiana , Phaeophyceae/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA