Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(17): 4363-4368, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29636420

RESUMO

Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618-8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal from the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy "genuine" and "hoax" objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.

2.
Proc Natl Acad Sci U S A ; 113(31): 8618-23, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432959

RESUMO

How does one prove a claim about a highly sensitive object such as a nuclear weapon without revealing information about the object? This paradox has challenged nuclear arms control for more than five decades. We present a mechanism in the form of an interactive proof system that can validate the structure and composition of an object, such as a nuclear warhead, to arbitrary precision without revealing either its structure or composition. We introduce a tomographic method that simultaneously resolves both the geometric and isotopic makeup of an object. We also introduce a method of protecting information using a provably secure cryptographic hash that does not rely on electronics or software. These techniques, when combined with a suitable protocol, constitute an interactive proof system that could reject hoax items and clear authentic warheads with excellent sensitivity in reasonably short measurement times.

3.
Appl Radiat Isot ; 206: 111201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271854

RESUMO

To combat the risk of nuclear smuggling, radiography systems are deployed at ports to scan cargo containers for concealed illicit materials. Dual energy radiography systems enable a rough elemental analysis of cargo containers due to the Z-dependence of photon attenuation, allowing for improved material detection. This work studies the capabilities for atomic number discrimination using dual energy MeV systems by considering dual energy {6,4}MeV, {10,6}MeV, and {10,4}MeV bremsstrahlung beams. Results of this analysis show that two different pure materials can sometimes produce identical transparency measurements, leading to a fundamental ambiguity when differentiating between materials of different atomic numbers. Previous literature has observed this property, but the extent of the limitation is poorly understood and the cause of the degeneracy is generally inadequately explained. This non-uniqueness property stems from competition between photoelectric absorption and pair production and is present even in systems with perfect resolution and zero statistical noise. These findings are validated through Monte Carlo transparency simulations. Results of this study show that currently deployed commercial radiographic systems are fundamentally incapable of distinguishing between high-Z nuclear materials and miscellaneous mid-Z cargo contents.

4.
Nat Commun ; 10(1): 4433, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570714

RESUMO

Arms control treaties are necessary to reduce the large stockpiles of the nuclear weapons that constitute one of the biggest dangers to the world. However, an impactful treaty hinges on effective inspection exercises to verify the participants' compliance to the treaty terms. Such procedures would require verification of the authenticity of a warhead undergoing dismantlement. Previously proposed solutions lacked the combination of isotopic sensitivity and information security. Here we present the experimental feasibility proof of a technique that uses neutron induced nuclear resonances and is sensitive to the combination of isotopics and geometry. The information is physically encrypted to prevent the leakage of sensitive information. Our approach can significantly increase the trustworthiness of future arms control treaties while expanding their scope to include the verified dismantlement of nuclear warheads themselves.

5.
Nat Commun ; 9(1): 1259, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593273

RESUMO

Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA