Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 11, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273318

RESUMO

BACKGROUND: The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS: In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS: These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.


Assuntos
Dessecação , Rotíferos , Animais , Rotíferos/genética , Radiação Ionizante , Reparo do DNA
2.
PLoS Pathog ; 17(11): e1010036, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748609

RESUMO

The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.


Assuntos
Regulação da Expressão Gênica , Proteínas de Helminto/metabolismo , Nicotiana/parasitologia , Doenças das Plantas/parasitologia , Transcriptoma , Tylenchida/fisiologia , Animais , Proteínas de Helminto/genética , Filogenia , Nicotiana/crescimento & desenvolvimento
3.
PLoS Comput Biol ; 18(11): e1010686, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350852

RESUMO

Horizontal gene transfer (HGT) is the transfer of genes between species outside the transmission from parent to offspring. Due to their impact on the genome and biology of various species, HGTs have gained broader attention, but high-throughput methods to robustly identify them are lacking. One rapid method to identify HGT candidates is to calculate the difference in similarity between the most similar gene in closely related species and the most similar gene in distantly related species. Although metrics on similarity associated with taxonomic information can rapidly detect putative HGTs, these methods are hampered by false positives that are difficult to track. Furthermore, they do not inform on the evolutionary trajectory and events such as duplications. Hence, phylogenetic analysis is necessary to confirm HGT candidates and provide a more comprehensive view of their origin and evolutionary history. However, phylogenetic reconstruction requires several time-consuming manual steps to retrieve the homologous sequences, produce a multiple alignment, construct the phylogeny and analyze the topology to assess whether it supports the HGT hypothesis. Here, we present AvP which automatically performs all these steps and detects candidate HGTs within a phylogenetic framework.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Transferência Genética Horizontal/genética , Filogenia , Genoma , Software , Evolução Molecular
4.
Proc Biol Sci ; 289(1976): 20220431, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703048

RESUMO

High levels of within-population behavioural variation can have drastic demographic consequences, thus changing the evolutionary fate of populations. A major source of within-population heterogeneity is personality. Nonetheless, it is still relatively rarely accounted for in social learning studies that constitute the most basic process of cultural transmission. Here, we performed in female mosquitofish (Gambusia holbrooki) a social learning experiment in the context of mate choice, a situation called mate copying (MC), and for which there is strong evidence that it can lead to the emergence of persistent traditions of preferring a given male phenotype. When accounting for the global tendency of females to prefer larger males but ignoring differences in personality, we detected no evidence for MC. However, when accounting for the bold-shy dichotomy, we found that bold females did not show any evidence for MC, while shy females showed significant amounts of MC. This illustrates how the presence of variation in personality can hamper our capacity to detect MC. We conclude that MC may be more widespread than we thought because many studies ignored the presence of within-population heterogeneities.


Assuntos
Ciprinodontiformes , Preferência de Acasalamento Animal , Aprendizado Social , Animais , Feminino , Masculino , Personalidade , Reprodução
5.
RNA Biol ; 18(11): 1653-1681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33302789

RESUMO

RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.


Assuntos
Inativação Gênica , Proteínas de Insetos/metabolismo , Insetos/classificação , Insetos/genética , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Proteínas de Insetos/genética , Insetos/metabolismo , Filogenia , Domínios Proteicos
6.
Phytopathology ; 111(1): 40-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33151824

RESUMO

Plant-parasitic nematodes are a costly burden of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Population genetics is a key discipline in plant nematology to understand aspects of the life strategies of these parasites, in particular their modes of reproduction, geographic origins, evolutionary histories, and dispersion abilities. Advances in high-throughput sequencing technologies have enabled a recent but active effort in genomic analyses of plant-parasitic nematodes. Such genomic approaches applied to multiple populations are providing new insights into the molecular and evolutionary processes that underpin the establishment of these nematodes and into a better understanding of the genetic and mechanistic basis of their pathogenicity and adaptation to their host plants. In this review, we attempt to update information about genome resources and genotyping techniques useful for nematologists who are thinking about initiating population genomics or genome sequencing projects. This review is intended also to foster the development of population genomics in plant-parasitic nematodes through highlighting recent publications that illustrate the potential for this approach to identify novel molecular markers or genes of interest and improve our knowledge of the genome variability, pathogenicity, and evolutionary potential of plant-parasitic nematodes.


Assuntos
Nematoides , Parasitos , Animais , Metagenômica , Nematoides/genética , Doenças das Plantas , Plantas
7.
Ecol Lett ; 23(8): 1242-1251, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394585

RESUMO

Trophic cascades - the indirect effect of predators on non-adjacent lower trophic levels - are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri-trophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores' lineage and host-plant specialization but are not associated with density-dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of trophic cascade strength and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi-trophic interactions.


Assuntos
Cadeia Alimentar , Herbivoria , Evolução Biológica , Estado Nutricional , Plantas
8.
Mol Genet Genomics ; 295(4): 1063-1078, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333171

RESUMO

Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Tylenchoidea/patogenicidade , Animais , Arachis/genética , Arachis/parasitologia , Café/genética , Café/parasitologia , Produtos Agrícolas/parasitologia , Regulação da Expressão Gênica de Plantas/genética , Genômica , Genótipo , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/genética
9.
Mol Ecol ; 29(17): 3316-3329, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32654215

RESUMO

Genes of the major histocompatibility complex (MHC) play a pivotal role in parasite resistance, and their allelic diversity has been associated with fitness variations in several taxa. However, studies report inconsistencies in the direction of this association, with either positive, quadratic or no association being described. These discrepancies may arise because the fitness costs and benefits of MHC diversity differ among individuals depending on their exposure and immune responses to parasites. Here, we investigated in black-legged kittiwake (Rissa tridactyla) chicks whether associations between MHC class-II diversity and fitness vary with sex and hatching order. MHC-II diversity was positively associated with growth and tick clearance in female chicks, but not in male chicks. Our data also revealed a positive association between MHC-II diversity and survival in second-hatched female chicks (two eggs being the typical clutch size). These findings may result from condition-dependent parasite infections differentially impacting sexes in relation to hatching order. We thus suggest that it may be important to account for individual heterogeneities in traits that potentially exert selective pressures on MHC diversity in order to properly predict MHC-fitness associations.


Assuntos
Charadriiformes , Parasitos , Alelos , Animais , Charadriiformes/genética , Feminino , Variação Genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Masculino , Seleção Genética
10.
PLoS Genet ; 13(6): e1006777, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28594822

RESUMO

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.


Assuntos
Variação Genética , Genoma Helmíntico , Hibridização Genética , Poliploidia , Reprodução Assexuada , Tylenchoidea/genética , Animais , Elementos de DNA Transponíveis , Genoma Mitocondrial , Polimorfismo Genético , Seleção Genética
11.
J Nematol ; 52: 1-5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180388

RESUMO

Root-knot nematodes from the genus Meloidogyne are polyphagous plant endoparasites and agricultural pests of global importance. Here, we report the high-quality genome sequence of Meloidogyne luci population SI-Smartno V13. The resulting genome assembly of M. luci SI-Smartno V13 consists of 327 contigs, with an N50 contig length of 1,711,905 bp and a total assembly length of 209.16 Mb.Root-knot nematodes from the genus Meloidogyne are polyphagous plant endoparasites and agricultural pests of global importance. Here, we report the high-quality genome sequence of Meloidogyne luci population SI-Smartno V13. The resulting genome assembly of M. luci SI-Smartno V13 consists of 327 contigs, with an N50 contig length of 1,711,905 bp and a total assembly length of 209.16 Mb.

12.
BMC Evol Biol ; 19(1): 100, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077129

RESUMO

BACKGROUND: Cellulose, a major polysaccharide of the plant cell wall, consists of ß-1,4-linked glucose moieties forming a molecular network recalcitrant to enzymatic breakdown. Although cellulose is potentially a rich source of energy, the ability to degrade it is rare in animals and was believed to be present only in cellulolytic microbes. Recently, it has become clear that some animals encode endogenous cellulases belonging to several glycoside hydrolase families (GHs), including GH45. GH45s are distributed patchily among the Metazoa and, in insects, are encoded only by the genomes of Phytophaga beetles. This study aims to understand both the enzymatic functions and the evolutionary history of GH45s in these beetles. RESULTS: To this end, we biochemically assessed the enzymatic activities of 37 GH45s derived from five species of Phytophaga beetles and discovered that beetle-derived GH45s degrade three different substrates: amorphous cellulose, xyloglucan and glucomannan. Our phylogenetic and gene structure analyses indicate that at least one gene encoding a putative cellulolytic GH45 was present in the last common ancestor of the Phytophaga, and that GH45 xyloglucanases evolved several times independently in these beetles. The most closely related clade to Phytophaga GH45s was composed of fungal sequences, suggesting this GH family was acquired by horizontal gene transfer from fungi. Besides the insects, other arthropod GH45s do not share a common origin and appear to have emerged at least three times independently. CONCLUSION: The rise of functional innovation from gene duplication events has been a fundamental process in the evolution of GH45s in Phytophaga beetles. Both, enzymatic activity and ancestral origin suggest that GH45s were likely an essential prerequisite for the adaptation allowing Phytophaga beetles to feed on plants.


Assuntos
Besouros/enzimologia , Besouros/genética , Transferência Genética Horizontal , Glicosídeo Hidrolases/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Biocatálise , Evolução Molecular , Genes de Insetos , Glicosídeo Hidrolases/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Filogenia
13.
Mol Ecol ; 28(10): 2559-2572, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30964953

RESUMO

Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root-knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant-parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.


Assuntos
Variações do Número de Cópias de DNA/genética , Evolução Molecular , Plantas/genética , Reprodução Assexuada/genética , Tylenchoidea/genética , Animais , Evolução Biológica , Genômica , Doenças das Plantas , Fenômenos Fisiológicos Vegetais/genética , Raízes de Plantas/genética , Plantas/parasitologia , Tylenchoidea/patogenicidade , Tylenchoidea/fisiologia
14.
J Exp Biol ; 222(Pt 21)2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31597729

RESUMO

Carotenoid-based ornaments are common signaling features in animals. Although the mechanisms that link color-based signals to individual condition is key to understanding the evolution and function of these ornaments, they are most often poorly known. Several hypotheses have been posited. They include: (i) the role of foraging abilities on carotenoid acquisition and thereby carotenoid-based ornaments, and (ii) the role of internal processes linked to individual quality on the allocation and conversion of carotenoids in integuments. Here, we tested the influence of dietary carotenoid access versus internal process on gape coloration in black-legged kittiwakes (Rissa tridactyla). This seabird displays a vibrant red gape, whose coloration varies with individual quality in males and is due to the deposition of red ketocarotenoids, such as astaxanthin. We decreased hydroxycarotenoid and ketocarotenoid levels in plasma, but increased efficiency in internal processes linked to nutritional condition, by supplementing breeding males with capelin, a natural energy-rich fish prey. We found that, despite having lower carotenoid levels in plasma, supplemented birds developed redder coloration than control birds, but only in the year when dietary levels of astaxanthin in the natural diet were low. In contrast, in the astaxanthin-rich year, supplemented males had a less-red gape than unsupplemented birds. These results suggest that inter-individual differences in internal processes may be sufficient to maintain the honesty of gape coloration under conditions of low dietary astaxanthin levels. Nonetheless, when inter-individual variations in dietary astaxanthin levels are elevated (such as in the crustacean-rich year), carotenoid access seems a more limiting factor to the expression of gape coloration than internal processes. Therefore, our study revealed a complex mechanism of gape color production in kittiwakes, and suggests that the main factor maintaining the condition dependency of this ornaments may vary with environmental conditions and diet composition.


Assuntos
Charadriiformes/fisiologia , Cor , Dieta , Estado Nutricional , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Masculino , Pigmentação , Xantofilas/administração & dosagem , Xantofilas/metabolismo
15.
Nature ; 500(7463): 453-7, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23873043

RESUMO

Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.


Assuntos
Evolução Biológica , Conversão Gênica/genética , Genoma/genética , Reprodução Assexuada/genética , Rotíferos/genética , Animais , Transferência Genética Horizontal/genética , Genômica , Meiose/genética , Modelos Biológicos , Tetraploidia
16.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652525

RESUMO

Root-knot nematodes (RKN), from the Meloidogyne genus, have a worldwide distribution and cause severe economic damage to many life-sustaining crops. Because of their lack of specificity and danger to the environment, most chemical nematicides have been banned from use. Thus, there is a great need for new and safe compounds to control RKN. Such research involves identifying beforehand the nematode proteins essential to the invasion. Since G protein-coupled receptors GPCRs are the target of a large number of drugs, we have focused our research on the identification of putative nematode GPCRs such as those capable of controlling the movement of the parasite towards (or within) its host. A datamining procedure applied to the genome of Meloidogyne incognita allowed us to identify a GPCR, belonging to the neuropeptide GPCR family that can serve as a target to carry out a virtual screening campaign. We reconstructed a 3D model of this receptor by homology modeling and validated it through extensive molecular dynamics simulations. This model was used for large scale molecular dockings which produced a filtered limited set of putative antagonists for this GPCR. Preliminary experiments using these selected molecules allowed the identification of an active compound, namely C260-2124, from the ChemDiv provider, which can serve as a starting point for further investigations.


Assuntos
Antinematódeos/química , Proteínas de Helminto/química , Proteínas de Helminto/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Tylenchoidea/genética , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Genoma Helmíntico , Proteínas de Helminto/antagonistas & inibidores , Interações Hospedeiro-Parasita/genética , Solanum lycopersicum/parasitologia , Simulação de Dinâmica Molecular , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/antagonistas & inibidores
17.
BMC Genomics ; 19(1): 321, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724186

RESUMO

BACKGROUND: The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. RESULTS: Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. CONCLUSIONS: Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment.


Assuntos
Epigênese Genética , Genoma , Plantas/parasitologia , Reprodução Assexuada/genética , Tylenchoidea/genética , Animais , Proteínas Argonautas/classificação , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , DNA (Citosina-5-)-Metiltransferases/classificação , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Filogenia , Raízes de Plantas/parasitologia , Processamento de Proteína Pós-Traducional/genética , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Pequeno RNA não Traduzido/genética
18.
BMC Plant Biol ; 18(1): 159, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081841

RESUMO

BACKGROUND: The Root-Knot Nematode (RKN), Meloidogyne arenaria, significantly reduces peanut grain quality and yield worldwide. Whilst the cultivated species has low levels of resistance to RKN and other pests and diseases, peanut wild relatives (Arachis spp.) show rich genetic diversity and harbor high levels of resistance to many pathogens and environmental constraints. Comparative transcriptome analysis can be applied to identify candidate resistance genes. RESULTS: Transcriptome analysis during the early stages of RKN infection of two peanut wild relatives, the highly RKN resistant Arachis stenosperma and the moderately susceptible A. duranensis, revealed genes related to plant immunity with contrasting expression profiles. These included genes involved in hormone signaling and secondary metabolites production and also members of the NBS-LRR class of plant disease resistance (R) genes. From 345 NBS-LRRs identified in A.duranensis reference genome, 52 were differentially expressed between inoculated and control samples, with the majority occurring in physical clusters unevenly distributed on eight chromosomes with preferential tandem duplication. The majority of these NBS-LRR genes showed contrasting expression behaviour between A. duranensis and A. stenosperma, particularly at 6 days after nematode inoculation, coinciding with the onset of the Hypersensitive Response in the resistant species. The physical clustering of some of these NBS-LRR genes correlated with their expression patterns in the contrasting genotypes. Four NBS-LRR genes exclusively expressed in A. stenosperma are located within clusters on chromosome Aradu. A09, which harbors a QTL for RKN resistance, suggesting a functional role for their physical arrangement and their potential involvement in this defense response. CONCLUSION: The identification of functional novel R genes in wild Arachis species responsible for triggering effective defense cascades can contribute to the crop genetic improvement and enhance peanut resilience to RKN.


Assuntos
Arachis/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Raízes de Plantas/metabolismo , Tylenchoidea , Animais , Arachis/genética , Arachis/parasitologia , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
19.
Heredity (Edinb) ; 121(3): 266-281, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29959428

RESUMO

Transgenerational phenotypic plasticity is a fast non-genetic response to environmental modifications that can buffer the effects of environmental stresses on populations. However, little is known about the evolution of plasticity in the absence of standing genetic variation although several non-genetic inheritance mechanisms have now been identified. Here we monitored the pea aphid transgenerational phenotypic response to ladybird predators (production of winged offspring) during 27 generations of experimental evolution in the absence of initial genetic variation (clonal multiplication starting from a single individual). We found that the frequency of winged aphids first increased rapidly in response to predators and then remained stable over 25 generations, implying a stable phenotypic reconstruction at each generation. We also found that the high frequency of winged aphids persisted for one generation after removing predators. Winged aphid frequency then entered a refractory phase during which it dropped below the level of control lines for at least two generations before returning to it. Interestingly, the persistence of the winged phenotype decreased and the refractory phase lasted longer with the increasing number of generations of exposure to predators. Finally, we found that aphids continuously exposed to predators for 22 generations evolved a significantly weaker plastic response than aphids never exposed to predators, which, in turn, increased their fitness in presence of predators. Our findings therefore showcased an example of experimental evolution of plasticity in the absence of initial genetic variation and highlight the importance of integrating several components of non-genetic inheritance to detect evolutionary responses to environmental changes.


Assuntos
Adaptação Fisiológica , Afídeos/fisiologia , Evolução Biológica , Comportamento Predatório , Estresse Fisiológico , Asas de Animais/fisiologia , Animais , Fabaceae , Variação Genética
20.
Plant Mol Biol ; 94(1-2): 79-96, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28243841

RESUMO

Expansins are plant cell wall-loosening proteins involved in adaptive responses to environmental stimuli and various developmental processes. The first genome-wide analysis of the expansin superfamily in the Arachis genus identified 40 members in A. duranensis and 44 in A. ipaënsis, the wild progenitors of cultivated peanut (A. hypogaea). These expansins were further characterized regarding their subfamily classification, distribution along the genomes, duplication events, molecular structure, and phylogeny. A RNA-seq expression analysis in different Arachis species showed that the majority of these expansins are modulated in response to diverse stresses such as water deficit, root-knot nematode (RKN) infection, and UV exposure, with an expansin-like B gene (AraEXLB8) displaying a highly distinct stress-responsive expression profile. Further analysis of the AraEXLB8 coding sequences showed high conservation across the Arachis genotypes, with eight haplotypes identified. The modulation of AraEXLB8 expression in response to the aforementioned stresses was confirmed by qRT-PCR analysis in distinct Arachis genotypes, whilst in situ hybridization revealed transcripts in different root tissues according to the stress imposed. The overexpression of AraEXLB8 in soybean (Glycine max) composite plants remarkably decreased the number of galls in transformed hairy roots inoculated with RKN. This study improves the current understanding of the molecular evolution, divergence, and gene expression of expansins in Arachis, and provides molecular and functional insights into the role of expansin-like B, the less-studied plant expansin subfamily.


Assuntos
Arachis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Parede Celular/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Células Vegetais/fisiologia , Doenças das Plantas/microbiologia , Raios Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA