Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Sci Technol ; 57(41): 15499-15510, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37795960

RESUMO

Hyporheic zones (HZs)─zones of groundwater-surface water mixing─are hotspots for dissolved organic matter (DOM) and nutrient cycling that can disproportionately impact aquatic ecosystem functions. However, the mechanisms affecting DOM metabolism through space and time in HZs remain poorly understood. To resolve this gap, we investigate a recently proposed theory describing trade-offs between carbon (C) and nitrogen (N) limitations as a key regulator of HZ metabolism. We propose that throughout the extent of the HZ, a single process like aerobic respiration (AR) can be limited by both DOM thermodynamics and N content due to highly variable C/N ratios over short distances (centimeter scale). To investigate this theory, we used a large flume, continuous optode measurements of dissolved oxygen (DO), and spatially and temporally resolved molecular analysis of DOM. Carbon and N limitations were inferred from changes in the elemental stoichiometric ratio. We show sequential, depth-stratified relationships of DO with DOM thermodynamics and organic N that change across centimeter scales. In the shallow HZ with low C/N, DO was associated with the thermodynamics of DOM, while deeper in the HZ with higher C/N, DO was associated with inferred biochemical reactions involving organic N. Collectively, our results suggest that there are multiple competing processes that limit AR in the HZ. Resolving this spatiotemporal variation could improve predictions from mechanistic models, either via more highly resolved grid cells or by representing AR colimitation by DOM thermodynamics and organic N.


Assuntos
Ecossistema , Água Subterrânea , Carbono/metabolismo , Nitrogênio/análise , Água Subterrânea/química , Matéria Orgânica Dissolvida , Respiração , Rios/química
2.
Environ Sci Technol ; 51(6): 3307-3317, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28218533

RESUMO

Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplain aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.


Assuntos
Água Subterrânea/química , Urânio/química , Sedimentos Geológicos/química , Nitratos , Oxirredução , Sulfatos/química , Poluentes Químicos da Água , Poluentes Radioativos da Água
3.
J Anat ; 225(4): 403-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046350

RESUMO

The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which 'cursorial specialization' affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and µCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high 'displacement advantage', permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing cursoriality, suggesting that the safety factor takes priority over locomotor economy in those regions of the postcranial skeleton that experience higher loading during locomotion. Overall, these findings support the hypothesis that cursoriality is associated with a common suite of morphological adaptations across a range of body sizes and radiations.


Assuntos
Ossos do Braço , Lagomorpha , Ossos da Perna , Corrida/fisiologia , Resistência à Tração , Animais , Ossos do Braço/anatomia & histologia , Ossos do Braço/fisiologia , Densidade Óssea/fisiologia , Lagomorpha/anatomia & histologia , Lagomorpha/fisiologia , Ossos da Perna/anatomia & histologia , Ossos da Perna/fisiologia , Maleabilidade , Estresse Mecânico , Tomografia Computadorizada por Raios X
4.
Gut Microbes ; 16(1): 2315633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358253

RESUMO

Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.


Assuntos
Microbioma Gastrointestinal , Propiofenonas , Adulto , Humanos , RNA Ribossômico 16S/genética , Flavonoides/farmacologia , Prebióticos
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502869

RESUMO

Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning-the combustion of logging residue on the forest floor-is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and surrounding regenerating forest after clear-cut harvesting provides a unique opportunity to assess whether belowground microbial processes mirror aboveground vegetation during disturbance-induced ecosystem shifts. Soil ectomycorrhizal fungal diversity was reduced the first decade after pile burning, which could explain poor tree seedling establishment and subsequent persistence of herbaceous species within the openings. Fine-scale changes in the soil microbiome mirrored aboveground shifts in vegetation, with short-term changes to microbial carbon cycling functions resembling a postfire microbiome (e.g. enrichment of aromatic degradation genes) and respiration in burn scars decoupled from substrate quantity and quality. Broadly, however, soil microbiome composition and function within burn scar soils converged with that of the surrounding regenerating forest six decades after the disturbances, indicating potential microbial resilience that was disconnected from aboveground vegetation shifts. This work begins to unravel the belowground microbial processes that underlie disturbance-induced ecosystem changes, which are increasing in frequency tied to climate change.


Assuntos
Microbiota , Ecossistema , Retroalimentação , Florestas , Solo/química
6.
mBio ; 14(5): e0175823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728606

RESUMO

IMPORTANCE: Carbon is cycled through the air, plants, and belowground environment. Understanding soil carbon cycling in deep soil profiles will be important to mitigate climate change. Soil carbon cycling is impacted by water, plants, and soil microorganisms, in addition to soil mineralogy. Measuring biotic and abiotic soil properties provides a perspective of how soil microorganisms interact with the surrounding chemical environment. This study emphasizes the importance of considering biotic interactions with inorganic and oxidizable soil carbon in addition to total organic carbon in carbonate-containing soils for better informing soil carbon management decisions.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Plantas , Mudança Climática
7.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066413

RESUMO

Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.

8.
NanoImpact ; 30: 100463, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060994

RESUMO

Graphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.


Assuntos
Microbiota , Peixe-Zebra , Humanos , Camundongos , Animais , RNA Ribossômico 16S/genética , Peixe-Zebra/genética , Bacteroidetes/genética , Ácido gama-Aminobutírico
9.
Microbiome ; 11(1): 34, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849975

RESUMO

BACKGROUND: Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up. RESULTS: Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting. CONCLUSIONS: Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.


Assuntos
Ecossistema , Lipidômica , Aclimatação , Ceramidas , Ácidos Graxos , Ácidos Graxos Insaturados
10.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565947

RESUMO

While evidence suggests that culinary herbs have the potential to modulate gut microbiota, much of the current research investigating the interactions between diet and the human gut microbiome either largely excludes culinary herbs or does not assess use in standard culinary settings. As such, the primary objective of this study was to evaluate how the frequency of culinary herb use is related to microbiome diversity and the abundance of certain taxa, measured at the phylum level. In this secondary data analysis of the INCLD Health cohort, we examined survey responses assessing frequency of culinary herb use and microbiome analysis of collected stool samples. We did not observe any associations between frequency of culinary herb use and Shannon Index, a measure of alpha diversity. Regarding the abundance of certain taxa, the frequency of use of polyphenol-rich herbs and herbs with certain quantities of antibacterial compounds was positively associated with Firmicutes abundance, and negatively associated with Proteobacteria abundance. Additionally, the total number of herbs used with high frequency, defined as over three times per week, was also positively associated with Firmicutes abundance, independent of adjustments, and negatively associated with Proteobacteria abundance, after adjusting for dietary factors. Frequency of culinary herb use was not associated with Bacteroidota or Actinobacteria abundance.


Assuntos
Microbioma Gastrointestinal , Bacteroidetes , Dieta , Firmicutes , Microbioma Gastrointestinal/fisiologia , Humanos , Proteobactérias/genética , RNA Ribossômico 16S/genética
11.
mSystems ; 7(5): e0037222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154140

RESUMO

Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, "model soil consortium-2" (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil. IMPORTANCE The soil microbiome performs many functions that are key to ecology, agriculture, and nutrient cycling. However, because of the complexity of this ecosystem we do not know the molecular details of the interactions between microbial species that lead to these important functions. Here, we use a representative but simplified model community of bacteria to understand the details of these interactions. We show that certain species act as primary degraders of carbon sources and that the most successful species are likely those that can take the most advantage of breakdown products, not necessarily the primary degraders. We also show that a species phenotype, including whether it is a primary degrader or not, is driven in large part by the membership of the community it resides in. These conclusions are critical to a better understanding of the soil microbial interaction network and how these interactions drive central soil microbiome functions.


Assuntos
Quitina , Microbiota , Quitina/metabolismo , Solo/química , Microbiota/genética , Carbono , Nitrogênio/metabolismo
12.
Front Microbiol ; 13: 803420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250925

RESUMO

Understanding the mechanisms underlying the assembly of communities has long been the goal of many ecological studies. While several studies have evaluated community wide ecological assembly, fewer have focused on investigating the impacts of individual members within a community or assemblage on ecological assembly. Here, we adapted a previous null model ß-nearest taxon index (ßNTI) to measure the contribution of individual features within an ecological community to overall assembly. This new metric, called feature-level ßNTI (ßNTIfeat), enables researchers to determine whether ecological features (e.g., individual microbial taxa) contribute to divergence, convergence, or have insignificant impacts across spatiotemporally resolved metacommunities or meta-assemblages. Using ßNTIfeat, we revealed that unclassified microbial lineages often contributed to community divergence while diverse groups (e.g., Crenarchaeota, Alphaproteobacteria, and Gammaproteobacteria) contributed to convergence. We also demonstrate that ßNTIfeat can be extended to other ecological assemblages such as organic molecules comprising organic matter (OM) pools. OM had more inconsistent trends compared to the microbial community though CHO-containing molecular formulas often contributed to convergence, while nitrogen and phosphorus-containing formulas contributed to both convergence and divergence. A network analysis was used to relate ßNTIfeat values from the putatively active microbial community and the OM assemblage and examine potentially common contributions to ecological assembly across different communities/assemblages. This analysis revealed that P-containing formulas often contributed to convergence/divergence separately from other ecological features and N-containing formulas often contributed to assembly in coordination with microorganisms. Additionally, members of Family Geobacteraceae were often observed to contribute to convergence/divergence in conjunction with both N- and P-containing formulas, suggesting a coordinated ecological role for family members and the nitrogen/phosphorus cycle. Overall, we show that ßNTIfeat offers opportunities to investigate the community or assemblage members, which shape the phylogenetic or functional landscape, and demonstrate the potential to evaluate potential points of coordination across various community types.

13.
Environ Sci Process Impacts ; 24(5): 773-782, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35416230

RESUMO

High-resolution mass spectrometry techniques are widely used in the environmental sciences to characterize natural organic matter and, when utilizing these instruments, researchers must make multiple decisions regarding sample pre-treatment and the instrument ionization mode. To identify how these choices alter organic matter characterization and resulting conclusions, we analyzed a collection of 17 riverine samples from East River, CO (USA) under four PPL-based Solid Phase Extraction (SPE) treatment and electrospray ionization polarity (e.g., positive and negative) combinations: SPE (+), SPE (-), non-SPE (-), and non-SPE (+). The greatest number of formula assignments were achieved with SPE-treated samples due to the removal of compounds that could interfere with ionization. Furthermore, the SPE (-) treatment captured the most formulas across the widest chemical compound diversity. In addition to a reduced number of assigned formulas, the non-SPE datasets resulted in altered thermodynamic interpretations that could cascade into incomplete assumptions about the availability of organic matter pools for heterotrophic microbial respiration. Thus, we infer that the SPE (-) treatment is the best single method for characterizing environmental organic matter pools unless the focus is on lipid-like compounds, in which case we recommend a combination of SPE (-) and SPE (+) to adequately characterize these molecules.


Assuntos
Matéria Orgânica Dissolvida , Extração em Fase Sólida , Espectrometria de Massas/métodos , Rios , Extração em Fase Sólida/métodos
14.
Sci Rep ; 11(1): 4179, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603043

RESUMO

Trace organic compounds (TrOCs) enter rivers with discharge of treated wastewater. These effluents can contain high loads of dissolved organic matter (DOM). In a 48 h field study, we investigated changes in molecular composition of seven DOM compound classes (FTICR-MS) and attenuation of 17 polar TrOCs in a small urban stream receiving treated wastewater. Correlations between TrOCs and DOM were used to identify simultaneous changes in surface water and the hyporheic zone. Changes in TrOC concentrations in surface water ranged between a decrease of 29.2% for methylbenzotriazole and an increase of 152.2% for the transformation product gabapentin-lactam. In the hyporheic zone, only decreasing TrOC concentrations were observed, ranging from 4.9% for primidone to 93.8% for venlafaxine . TrOC attenuation coincided with a decline of molecular diversity of easily biodegradable DOM compound classes while molecular diversity of poorly biodegradable DOM compound classes increased. This concurrence indicates similar or linked attenuation pathways for biodegradable DOM and TrOCs. Strong correlations between TrOCs and DOM compound classes as well as high attenuation of TrOCs primarily occurred in the hyporheic zone. This suggests high potential for DOM turnover and TrOC mitigation in rivers if hyporheic exchange is sufficient.

15.
Sci Total Environ ; 788: 147409, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34022577

RESUMO

Stream and river systems transport and process substantial amounts of dissolved organic matter (DOM) from terrestrial and aquatic sources to the ocean, with global biogeochemical implications. However, the underlying mechanisms affecting the spatiotemporal organization of DOM composition are under-investigated. To understand the principles governing DOM composition, we leverage the recently proposed synthesis of metacommunity ecology and metabolomics, termed 'meta-metabolome ecology.' Applying this novel approach to a freshwater ecosystem, we demonstrated that despite similar molecular properties across metabolomes, metabolite identity significantly diverged due to environmental filtering and variations in putative biochemical transformations. We refer to this phenomenon as 'thermodynamic redundancy,' which is analogous to the ecological concept of functional redundancy. We suggest that under thermodynamic redundancy, divergent metabolomes can support equivalent biogeochemical function just as divergent ecological communities can support equivalent ecosystem function. As these analyses are performed in additional ecosystems, potentially generalizable concepts, like thermodynamic redundancy, can be revealed and provide insight into DOM dynamics.


Assuntos
Ecossistema , Metaboloma , Metabolômica , Rios
16.
Front Microbiol ; 12: 754698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887842

RESUMO

Microbial communities in incipient soil systems serve as the only biotic force shaping landscape evolution. However, the underlying ecological forces shaping microbial community structure and function are inadequately understood. We used amplicon sequencing to determine microbial taxonomic assembly and metagenome sequencing to evaluate microbial functional assembly in incipient basaltic soil subjected to precipitation. Community composition was stratified with soil depth in the pre-precipitation samples, with surficial communities maintaining their distinct structure and diversity after precipitation, while the deeper soil samples appeared to become more uniform. The structural community assembly remained deterministic in pre- and post-precipitation periods, with homogenous selection being dominant. Metagenome analysis revealed that carbon and nitrogen functional potential was assembled stochastically. Sub-populations putatively involved in the nitrogen cycle and carbon fixation experienced counteracting assembly pressures at the deepest depths, suggesting the communities may functionally assemble to respond to short-term environmental fluctuations and impact the landscape-scale response to perturbations. We propose that contrasting assembly forces impact microbial structure and potential function in an incipient landscape; in situ landscape characteristics (here homogenous parent material) drive community structure assembly, while short-term environmental fluctuations (here precipitation) shape environmental variations that are random in the soil depth profile and drive stochastic sub-population functional dynamics.

17.
Nat Commun ; 11(1): 6369, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311510

RESUMO

Environmental metabolomes are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, significant gaps exist in our understanding of their spatiotemporal organization, limiting our ability to uncover transferrable principles and predict ecosystem function. We propose that a theoretical paradigm, which integrates concepts from metacommunity ecology, is necessary to reveal underlying mechanisms governing metabolomes. We call this synthesis between ecology and metabolomics 'meta-metabolome ecology' and demonstrate its utility using a mass spectrometry dataset. We developed three relational metabolite dendrograms using molecular properties and putative biochemical transformations and performed ecological null modeling. Based upon null modeling results, we show that stochastic processes drove molecular properties while biochemical transformations were structured deterministically. We further suggest that potentially biochemically active metabolites were more deterministically assembled than less active metabolites. Understanding variation in the influences of stochasticity and determinism provides a way to focus attention on which meta-metabolomes and which parts of meta-metabolomes are most likely to be important to consider in mechanistic models. We propose that this paradigm will allow researchers to study the connections between ecological systems and their molecular processes in previously inaccessible detail.


Assuntos
Ecologia , Metaboloma , Biodiversidade , Ecossistema , Metabolômica , Modelos Biológicos , Modelos Teóricos , Processos Estocásticos , Termodinâmica
18.
Metabolites ; 10(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419380

RESUMO

River corridor metabolomes reflect organic matter (OM) processing that drives aquatic biogeochemical cycles. Recent work highlights the power of ultrahigh-resolution mass spectrometry for understanding metabolome composition and river corridor metabolism. However, there have been no studies on the global chemogeography of surface water and sediment metabolomes using ultrahigh-resolution techniques. Here, we describe a community science effort from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium to characterize global metabolomes in surface water and sediment that span multiple stream orders and biomes. We describe the distribution of key aspects of metabolomes including elemental groups, chemical classes, indices, and inferred biochemical transformations. We show that metabolomes significantly differ across surface water and sediment and that surface water metabolomes are more rich and variable. We also use inferred biochemical transformations to identify core metabolic processes shared among surface water and sediment. Finally, we observe significant spatial variation in sediment metabolites between rivers in the eastern and western portions of the contiguous United States. Our work not only provides a basis for understanding global patterns in river corridor biogeochemical cycles but also demonstrates that community science endeavors can enable global research projects that are unfeasible with traditional research models.

19.
PLoS One ; 14(9): e0221694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490939

RESUMO

Despite the importance of microbial activity in mobilizing arsenic in groundwater aquifers, the phylogenetic distribution of contributing microbial metabolisms is understudied. Groundwater samples from Ohio aquifers were analyzed using metagenomic sequencing to identify functional potential that could drive arsenic cycling, and revealed mechanisms for direct (i.e., Ars system) and indirect (i.e., iron reduction) arsenic mobilization in all samples, despite differing geochemical conditions. Analyses of 194 metagenome-assembled genomes (MAGs) revealed widespread functionality related to arsenic mobilization throughout the bacterial tree of life. While arsB and arsC genes (components of an arsenic resistance system) were found in diverse lineages with no apparent phylogenetic bias, putative aioA genes (aerobic arsenite oxidase) were predominantly identified in Methylocystaceae MAGs. Both previously described and undescribed respiratory arsenate reduction potential via arrA was detected in Betaproteobacteria, Deltaproteobacteria, and Nitrospirae MAGs, whereas sulfate reduction potential was primarily limited to members of the Deltaproteobacteria and Nitrospirae. Lastly, iron reduction potential was detected in the Ignavibacteria, Deltaproteobacteria, and Nitrospirae. These results expand the phylogenetic distribution of taxa that may play roles in arsenic mobilization in subsurface systems. Specifically, the Nitrospirae are a much more functionally diverse group than previously assumed and may play key biogeochemical roles in arsenic-contaminated ecosystems.


Assuntos
Arsênio/metabolismo , Água Subterrânea/microbiologia , Filogenia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ferro/metabolismo , Metagenômica , Microbiota , Sulfatos/metabolismo
20.
mSystems ; 3(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29984314

RESUMO

Microbial ecological processes are frequently studied in the presence of perturbations rather than in undisturbed environments, despite the relatively stable conditions dominating many microbial habitats. To examine processes influencing microbial community structuring in the absence of strong external perturbations, three unperturbed aquifers in Ohio (Greene, Licking, and Athens) were sampled over 2 years and analyzed using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Redox conditions ranging from highly reducing to more oxidizing distinguished aquifer geochemistry across the three locations. Distinct microbial communities were present in each aquifer, and overall community structure was related to geochemistry, although community composition was more similar between the Athens and Licking locations. The ecological processes acting upon microbial assemblages within aquifers were varied; geochemical changes affected the Athens location, while time or some unknown factor affected Greene County. Stochastic processes, however, dominated the Licking aquifer, suggesting a decoupling between environmental fluctuations and community development. Although physicochemical differences might be expected to drive variable selection, dispersal limitation (inability to mix) explained differences between Athens and Licking. Finally, community complexity as measured by "cohesion" indicated that less-interconnected communities experienced higher turnover and were more likely to be affected by stochastic processes. Conversely, more-interconnected communities experienced lower turnover and susceptibility to homogenizing selection. Based upon these data, we support the hypothesis that unperturbed environments house dynamic microbial communities due to external and internal forces. IMPORTANCE Many microbial ecology studies have examined community structuring processes in dynamic or perturbed situations, while stable environments have been investigated to a lesser extent. Researchers have predicted that environmental communities never truly reach a steady state but rather exist in states of constant flux due to internal, rather than external, dynamics. The research presented here utilized a combined null model approach to examine the deterministic and stochastic processes responsible for observed community differences in unperturbed, groundwater ecosystems. Additionally, internal dynamics were investigated by relating a recently published measure of community complexity (cohesion) to ecological structuring processes. The data presented here suggest that communities that are more cohesive, and therefore more complex, are more likely affected by homogenizing selection, while less-complex communities are more susceptible to dispersal. By understanding the relationship between internal dynamics and community structuring processes, insight about microbial population development in natural systems can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA