Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mar Drugs ; 20(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35200637

RESUMO

Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.


Assuntos
Sedimentos Geológicos/microbiologia , Interações Microbianas , Água do Mar/microbiologia , Biodegradação Ambiental , Biotecnologia/métodos , Humanos , Microbiota
2.
Appl Environ Microbiol ; 79(7): 2137-47, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335759

RESUMO

Thaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earth's surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the assimilation of carbon. We tested this hypothesis in the northern South China Sea (nSCS), a section of a large oligotrophic marginal sea with limited influx of nutrients, including nitrogen, by investigating the diversity, abundance, community structure, and spatial distribution of thaumarchaeotal signatures in surface sediments. Quantitative real-time PCR using primers designed to detect 16S rRNA and amoA genes in sediment community DNA revealed a significantly higher abundance of pertinent thaumarchaeotal than betaproteobacterial genes. This finding correlates with high levels of hcd genes, a signature of thaumarchaeotal autotrophic carbon fixation. Thaumarchaeol, a signature lipid biomarker for thaumarchaeota, constituted the majority of archaeal lipids in marine sediments. Sediment temperature and organic P and silt contents were identified as key environmental factors shaping the community structure and distribution of the monitored thaumarchaeotal amoA genes. When the pore water PO4(3-) concentration was controlled for via partial-correlation analysis, thaumarchaeotal amoA gene abundance significantly correlated with the sediment pore water NO2(-) concentration, suggesting that the amoA-bearing thaumarchaeota contribute to nitrite production. Statistical analyses also suggest that thaumarchaeotal metabolism could serve as a pivotal intersection of the carbon, nitrogen, and phosphorus cycles in marine sediments.


Assuntos
Archaea/metabolismo , Carbono/metabolismo , Redes e Vias Metabólicas/genética , Metagenoma , Nitrogênio/metabolismo , Fósforo/metabolismo , Biota , China , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sedimentos Geológicos , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
3.
Appl Environ Microbiol ; 79(1): 121-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064334

RESUMO

The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N(2) fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution, and community structure of the sediment diazotrophic microbiota were investigated at 12 sampling sites, including estuarine, coastal, offshore, deep-sea, and methane hydrate reservoirs or their prospective areas by targeting nifH and some other functional biomarker genes. Diverse and novel nifH sequences were obtained, significantly extending the evolutionary complexity of extant nifH genes. Statistical analyses indicate that sediment in situ temperature is the most significant environmental factor influencing the abundance, community structure, and spatial distribution of the sediment nifH-harboring microbial assemblages in the northern SCS (nSCS). The significantly positive correlation of the sediment pore water NH(4)(+) concentration with the nifH gene abundance suggests that the nSCS sediment nifH-harboring microbiota is active in N(2) fixation and NH(4)(+) production. Several other environmental factors, including sediment pore water PO(4)(3-) concentration, sediment organic carbon, nitrogen and phosphorus levels, etc., are also important in influencing the community structure, spatial distribution, or abundance of the nifH-harboring microbial assemblages. We also confirmed that the nifH genes encoded by archaeal diazotrophs in the ANME-2c subgroup occur exclusively in the deep-sea methane seep areas, providing for the possibility to develop ANME-2c nifH genes as a diagnostic tool for deep-sea methane hydrate reservoir discovery.


Assuntos
Biota , Variação Genética , Sedimentos Geológicos/microbiologia , Metagenoma , Oxirredutases/genética , China , Dados de Sequência Molecular , Fixação de Nitrogênio , Filogeografia , Análise de Sequência de DNA , Temperatura
4.
J Basic Microbiol ; 53(4): 381-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22915066

RESUMO

In this study, Saccharomyces cerevisiae was genetically engineered to harbor the capability of utilizing celluloses for bioethanol production by displaying active cellulolytic enzymes on the cell surface. An endo-1,4-ß-glucanase gene egX was cloned from Bacillus pumilus C-9 and its expression products, the EGX cellulases, were displayed on the cell surface of S. cerevisiae by fusing egX with aga2 that encodes the binding subunit of the S. cerevisiae cell wall protein α-agglutinin. To achieve high gene copies and stability, multicopy integration was obtained by integrating the fusion aga2-egX gene into the rDNA region of the S. cerevisiae chromosome. To achieve high expression and surface display efficiency, the aga2-egX gene was expressed under the control of a strong promoter. The presence of the enzymatically active cellulase fusion proteins on the S. cerevisiae cell surface was verified by carboxymethyl cellulase activity assay and immunofluorescence microscopy. This work presented a promising strategy to genetically engineer yeasts to perform efficient fermentation of cellulosic materials for bioethanol production.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Celulase/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Bacillus/enzimologia , Bacillus/genética , Biotecnologia/métodos , Celulase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Expressão Gênica , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
5.
Environ Microbiol ; 14(2): 467-79, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22117845

RESUMO

Archaea of the Miscellaneous Crenarchaeotic Group (MCG) exist widely in soil, freshwater and marine sediments of both surface and subsurface. However, current knowledge about this group is limited to its phylogenetic diversity. An archaeal 16S library was constructed from a sediment sample from the South China Sea, which was dominated by MCG and Marine Group I (MG-I). A metagenomic library was constructed from the same sediment sample, and three MCG fosmids (E6-3G, E37-7F and E48-1C) containing 16S rRNA genes were screened. Annotation showed that the three genomic fragments encode a variety of open reading frames (ORFs) that are potentially homologous to important functional genes related to lipid biosynthesis, energy metabolism, and resistance to oxidants. No colinear regions were found between MCG fosmids and reported archaeal genomic fragments or genomes, suggesting that the MCG archaea are quite different from the sequenced archaea in gene arrangement. Analyses of both the phylogenies of 16S rRNA genes and several informational processing genes and nucleotide frequencies showed that MCG archaea are distinct from MG-I plus relatives. In addition, tetranucleotide frequency analysis in combination with phylogenetic analysis suggested that some fragments in the MCG fosmids are probably derived from non-MCG or non-archaeal genomes.


Assuntos
Archaea/genética , DNA Arqueal/análise , Archaea/classificação , Archaea/fisiologia , Sequência de Bases , China , Biblioteca Gênica , Genes de RNAr , Genoma Arqueal , Sedimentos Geológicos/microbiologia , Metagenômica , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
6.
Int J Syst Evol Microbiol ; 62(Pt 2): 370-375, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21441375

RESUMO

A protease-producing marine bacterium, designated CF12-14(T), was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14(T) formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52(T) (94.7 %), Idiomarina seosinensis CL-SP19(T) (94.6 %) and other members of the genus Idiomarina (91.9-94.6 %). Cells were gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14(T) grew at 4-42 °C (optimum 30-35 °C) and with 0.1-15 % (w/v) NaCl (optimum 2-3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C(15 : 0) (27.4 %), iso-C(17 : 0) (16.0 %) and iso-C(17 : 1)ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14(T) represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14(T) ( = CCTCC AB 208166(T) = KACC 13974(T)).


Assuntos
Alteromonadaceae/classificação , Alteromonadaceae/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Alteromonadaceae/química , Alteromonadaceae/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/análise , DNA Ribossômico/análise , Ácidos Graxos/análise , Genes de RNAr , Lipídeos/análise , Dados de Sequência Molecular , Fenótipo , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
7.
Microb Ecol ; 64(1): 187-99, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22252223

RESUMO

Diversity and prevalence of plasmid-mediated quinolone resistance determinants were investigated in environmental bacteria isolated from surface seawater of Jiaozhou Bay, China. Five qnr gene alleles were identified in 34 isolates by PCR amplification, including qnrA3 gene in a Shewanella algae isolate, qnrB9 gene in a Citrobacter freundii isolate, qnrD gene in 22 Proteus vulgaris isolates, qnrS1 gene in 1 Enterobacter sp. and 4 Klebsiella spp. isolates, and qnrS2 gene in 1 Pseudomonas sp. and 4 Pseudoalteromonas sp. isolates. The qnrC, aac(6')-Ib-cr, and qepA genes could not be detected in this study. The 22 qnrD-positive Proteus vulgaris isolates could be differentiated into four genotypes based on ERIC-PCR assay. The qnrS1 and qnrD genes could be transferred to Escherichia coli J53 Azi(R) or E. coli TOP10 recipient strains using conjugation or transformation methods. Among the 34 qnr-positive isolates, 30 had a single point mutation in the QRDRs of GyrA protein (Ala67Ser, Ser83Ile, or Ser83Thr), indicating that cooperation of chromosome- and plasmid-mediated resistance contributed to the spread and evolution of quinolone resistance in this coastal bay. Eighty-five percent of the isolates were also found to be resistant to ampicillin, and bla(CMY), bla(OXY), bla(SHV), and bla(TEM) genes were detected in five isolates that also harbored the qnrB9 or qnrS1 gene. Our current study is the first identification of qnrS2 gene in Pseudoalteromonas and Pseudomonas strains, and qnrD gene in Proteus vulgaris strains. High prevalence of diverse qnr genes in Jiaozhou Bay indicates that coastal seawater may serve as an important reservoir, natural source, and dissemination vehicle of quinolone resistance determinants.


Assuntos
Antibacterianos/farmacologia , Bactérias/isolamento & purificação , Baías/microbiologia , Farmacorresistência Bacteriana , Plasmídeos/genética , Quinolonas/farmacologia , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , China , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Filogenia , Plasmídeos/metabolismo
8.
Biology (Basel) ; 11(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421384

RESUMO

Phage-based pathogen control (i.e., phage therapy) has received increasing scientific attention to reduce and prevent the emergence, transmission, and detrimental effects of antibiotic resistance. In the current study, multidrug-resistant Vibrio natriegens strain AbY-1805 was isolated and tentatively identified as a pathogen causing the death of juvenile Pacific abalones (Haliotis discus hannai Ino). In order to apply phage therapy, instead of antibiotics, to treat and control V. natriegens infections in marine aquaculture environments, a lytic phage, vB_VnaS-L3, was isolated. It could effectively infect V. natriegens AbY-1805 with a short latent period (40 min) and high burst size (~890 PFU/cell). Treatment with vB_VnaS-L3 significantly reduced the mortality of juvenile abalones and maintained abalone feeding capacity over a 40-day V. natriegens challenge experiment. Comparative genomic and phylogenetic analyses suggested that vB_VnaS-L3 was a novel marine Siphoviridae-family phage. Furthermore, vB_VnaS-L3 had a narrow host range, possibly specific to the pathogenic V. natriegens strains. It also exhibited viability at a wide range of pH, temperature, and salinity. The short latent period, large burst size, high host specificity, and broad environmental adaptation suggest that phage vB_VnaS-L3 could potentially be developed as an alternative antimicrobial for the control and prevention of marine animal infections caused by pathogenic V. natriegens.

9.
Environ Microbiol ; 13(11): 3059-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21951343

RESUMO

Submerged metal surfaces in marine waters undergo rapid microbial colonization and biocorrosion, causing huge damage to marine engineering facilities and significant financial losses. In coastal areas, an accelerated and particularly severe form of biocorrosion termed accelerated low water corrosion (ALWC) is widespread globally. While identification of biocorroding microorganisms and the dynamics of their community structures is the key for understanding the processes and mechanisms leading to ALWC, neither one is presently understood. In this study, analysis of constructed clone libraries and qPCR assays targeting group-specific 16S rRNA or functional marker genes were used to determine the identity and abundance of putative early carbon steel surface-colonizing and biocorroding microbes in coastal seawater. Diverse microbial groups including 10 bacterial phyla, archaea and algae were found to putatively participate in the surface-colonizing process. Analysis of the community structure of carbon steel surface microbiota revealed a temporal succession leading to ALWC. By extending the current state of knowledge, our work demonstrates the global importance of Alphaproteobacteria (mainly Rhodobacterales), Gammaproteobacteria (mainly Alteromonadales and Oceanospirillales), Bacteroidetes (mainly Flavobacteriales) and microalgae as the pioneer and sustaining surface colonizers that contribute to initial formation and development of surface biofilms. We also discovered Epsilonproteobacteria and the recently described Zetaproteobacteria as putative corrosion-causing microorganisms during early steps of the ALWC process. Hence, our study reports that Zetaproteobacteria may be ubiquitous also in non-hydrothermal coastal seawaters and that ALWC of submerged carbon steel surfaces in coastal waters may involve a highly diverse, complex and dynamic microbial consortium. Our finding that Epsilon- and Zetaproteobacteria may play pivotal roles in ALWC provides a new starting point for future investigation of the ALWC process and mechanism in marine environments. Further studies of Epsilon- and Zetaproteobacteria in particular may thus help with the design of effective corrosion prevention and control strategies.


Assuntos
Bacteroidetes/genética , Biofilmes , Metagenoma , Proteobactérias/genética , Água do Mar/microbiologia , Aço , Bacteroidetes/classificação , Corrosão , Biblioteca Gênica , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Proteobactérias/classificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia da Água
10.
Int J Syst Evol Microbiol ; 61(Pt 5): 1016-1022, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20511463

RESUMO

A Gram-negative, facultatively aerobic, oxidase- and catalase-positive, rod-shaped bacterium, designated strain E407-8(T), was isolated from a sediment sample from the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain E407-8(T) was affiliated with the genus Rheinheimera, sharing the highest sequence similarity with Rheinheimera pacifica KMM 1406(T) (97.5 %) and Rheinheimera aquimaris SW-353(T) (97.4 %) and showing less than 97 % sequence similarity to the type strains of other recognized Rheinheimera species. Levels of DNA-DNA relatedness of strain E407-8(T) to R. pacifica DSM 17616(T) and R. aquimaris JCM 14331(T) were 25.2 % (25.3 % in the duplicate measurement) and 9.4 % (6.5 %), respectively. The bacterium could grow at 10-48 °C (optimum 37 °C) and in the presence of 0-8 % (w/v) NaCl (optimum 0.5-2.5 %). The major cellular fatty acids of strain E407-8(T) were summed feature 3 (C(16 : 1)ω7c and/or iso-C(15 : 0) 2-OH), C(17 : 1)ω8c, C(16 : 0) and C(18 : 1)ω7c. The predominant respiratory quinone was ubiquinone Q-8. The DNA G+C content was 51.0 mol%. Based on the results of our polyphasic taxonomic study, strain E407-8(T) represents a novel species in the genus Rheinheimera, for which the name Rheinheimera nanhaiensis sp. nov. is proposed. The type strain is E407-8(T) ( = CCTCC AB 209089(T)  = KACC 14030(T)). An emended description of the genus Rheinheimera Brettar et al. 2002 emend. Merchant et al. 2007 is also proposed.


Assuntos
Chromatiaceae/classificação , Chromatiaceae/isolamento & purificação , Sedimentos Geológicos/microbiologia , Chromatiaceae/genética , Chromatiaceae/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
11.
Environ Pollut ; 291: 118157, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530245

RESUMO

Aroclor 1260, a commercial polychlorinated biphenyl (PCB) mixture, is highly recalcitrant to biotransformation. A negatively polarized cathode (-0.35 V vs. standard hydrogen electrode) was applied for the first time to a marine-origin PCB dechlorinating culture that substantially increased the microbial dechlorination rate of Aroclor 1260 (from 8.6 to 11.6 µM Cl- d-1); meta-chlorine removal was stimulated and higher proportions of tetra-CBs (43.2-46.6%), the predominant dechlorination products, were observed compared to the open circuit conditions (23.7-25.1%). The dechlorination rate was further enhanced (14.1 µM Cl- d-1) by amendment with humin as a solid-phase redox mediator. After the suspension culture was renewed using an anaerobic medium, dechlorination activity was effectively maintained solely by cathodic biofilms, where cyclic voltammetry results indicated their redox activity. Electric potential had a significant effect on microbial community structure in the cathodic biofilm, where a greater abundance of Dehalococcoides (2.59-3.02%), as potential dechlorinators, was observed compared to that in the suspension culture (0.41-0.55%). Moreover, Dehalococcoides adhering to the cathode showed a higher chlorine removal rate than in the suspension culture. These findings provide insights into the dechlorination mechanism of cathodic biofilms involving Dehalococcoides for PCB mixtures and extend the application prospects of bioremediation to PCB contamination in the natural environment.


Assuntos
Chloroflexi , Bifenilos Policlorados , Arocloros , Biodegradação Ambiental , Cloro , Sedimentos Geológicos
12.
BMC Genomics ; 11: 247, 2010 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-20398413

RESUMO

BACKGROUND: Zunongwangia profunda SM-A87, which was isolated from deep-sea sediment, is an aerobic, gram-negative bacterium that represents a new genus of Flavobacteriaceae. This is the first sequenced genome of a deep-sea bacterium from the phylum Bacteroidetes. RESULTS: The Z. profunda SM-A87 genome has a single 5 128 187-bp circular chromosome with no extrachromosomal elements and harbors 4 653 predicted protein-coding genes. SM-A87 produces a large amount of capsular polysaccharides and possesses two polysaccharide biosynthesis gene clusters. It has a total of 130 peptidases, 61 of which have signal peptides. In addition to extracellular peptidases, SM-A87 also has various extracellular enzymes for carbohydrate, lipid and DNA degradation. These extracellular enzymes suggest that the bacterium is able to hydrolyze organic materials in the sediment, especially carbohydrates and proteinaceous organic nitrogen. There are two clustered regularly interspaced short palindromic repeats in the genome, but their spacers do not match any sequences in the public sequence databases. SM-A87 is a moderate halophile. Our protein isoelectric point analysis indicates that extracellular proteins have lower predicted isoelectric points than intracellular proteins. SM-A87 accumulates organic osmolytes in the cell, so its extracelluar proteins are more halophilic than its intracellular proteins. CONCLUSION: Here, we present the first complete genome of a deep-sea sedimentary bacterium from the phylum Bacteroidetes. The genome analysis shows that SM-A87 has some common features of deep-sea bacteria, as well as an important capacity to hydrolyze sedimentary organic nitrogen.


Assuntos
Flavobacteriaceae/genética , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Nitrogênio/metabolismo , Água do Mar/microbiologia , Temperatura Baixa , Flavobacteriaceae/classificação , Flavobacteriaceae/metabolismo , Hidrólise , Polissacarídeos/metabolismo , Salinidade , Enxofre/metabolismo
13.
Appl Environ Microbiol ; 76(14): 4691-702, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20511433

RESUMO

Ongoing anthropogenic eutrophication of Jiaozhou Bay offers an opportunity to study the influence of human activity on bacterial communities that drive biogeochemical cycling. Nitrification in coastal waters appears to be a sensitive indicator of environmental change, suggesting that function and structure of the microbial nitrifying community may be associated closely with environmental conditions. In the current study, the amoA gene was used to unravel the relationship between sediment aerobic obligate ammonia-oxidizing Betaproteobacteria (Beta-AOB) and their environment in Jiaozhou Bay. Protein sequences deduced from amoA gene sequences grouped within four distinct clusters in the Nitrosomonas lineage, including a putative new cluster. In addition, AmoA sequences belonging to three newly defined clusters in the Nitrosospira lineage were also identified. Multivariate statistical analyses indicated that the studied Beta-AOB community structures correlated with environmental parameters, of which nitrite-N and sediment sand content had significant impact on the composition, structure, and distribution of the Beta-AOB community. Both amoA clone library and quantitative PCR (qPCR) analyses indicated that continental input from the nearby wastewater treatment plants and polluted rivers may have significant impact on the composition and abundance of the sediment Beta-AOB assemblages in Jiaozhou Bay. Our work is the first report of a direct link between a sedimentological parameter and the composition and distribution of the sediment Beta-AOB and indicates the potential for using the Beta-AOB community composition in general and individual isolates or environmental clones in the Nitrosomonas oligotropha lineage in particular as bioindicators and biotracers of pollution or freshwater or wastewater input in coastal environments.


Assuntos
Amônia/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Metagenoma , Nitrosomonadaceae/classificação , Nitrosomonadaceae/metabolismo , Proteínas de Bactérias/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eutrofização , Dados de Sequência Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Appl Environ Microbiol ; 76(21): 7036-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833786

RESUMO

Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S rRNA and hzo genes to characterize the composition and structure of the anammox bacterial community in the sediments of the eutrophic Jiaozhou Bay, thereby unraveling their diversity, abundance, and distribution. Abundance and distribution of hzo genes revealed a greater taxonomic diversity in Jiaozhou Bay, including several novel clades of anammox bacteria. In contrast, the targeting of 16S rRNA genes verified the presence of only "Candidatus Scalindua," albeit with a high microdiversity. The genus "Ca. Scalindua" comprised the apparent majority of active sediment anammox bacteria. Multivariate statistical analyses indicated a heterogeneous distribution of the anammox bacterial assemblages in Jiaozhou Bay. Of all environmental parameters investigated, sediment organic C/organic N (OrgC/OrgN), nitrite concentration, and sediment median grain size were found to impact the composition, structure, and distribution of the sediment anammox bacterial community. Analysis of Pearson correlations between environmental factors and abundance of 16S rRNA and hzo genes as determined by fluorescent real-time PCR suggests that the local nitrite concentration is the key regulator of the abundance of anammox bacteria in Jiaozhou Bay sediments.


Assuntos
Bactérias Anaeróbias/metabolismo , Sedimentos Geológicos/microbiologia , Compostos de Amônio Quaternário/metabolismo , Microbiologia da Água , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , China , DNA Bacteriano/genética , Meio Ambiente , Eutrofização , Genes Bacterianos/genética , Dados de Sequência Molecular , Oceanos e Mares , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
15.
Appl Environ Microbiol ; 75(7): 2238-45, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181830

RESUMO

Diverse nifH and nifH-like gene sequences were obtained from the deep-sea surface sediments of the methane hydrate-bearing Okhotsk Sea. Some sequences formed novel families of the NifH or NifH-like proteins, of currently unresolved bacterial or archaeal origin. Comparison with other marine environments indicates environmental specificity of some of the sequences, either unique to the methane seep sediments of the Okhotsk Sea or to the general deep-sea methane seep sedimentary environments.


Assuntos
Biodiversidade , DNA Arqueal/genética , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Oxirredutases/genética , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/genética , Geografia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência
16.
Microb Ecol ; 58(1): 161-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19018587

RESUMO

A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria-environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4+ concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community.


Assuntos
Bactérias/genética , Eutrofização , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/isolamento & purificação , China , Análise por Conglomerados , DNA Bacteriano/genética , Genes Bacterianos , Análise Multivariada , Análise de Sequência de DNA
17.
Microb Ecol ; 58(3): 582-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19301066

RESUMO

Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.


Assuntos
Gammaproteobacteria/genética , Sedimentos Geológicos/microbiologia , Peptídeo Hidrolases/genética , Microbiologia da Água , Biodiversidade , China , DNA Bacteriano/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/enzimologia , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
18.
Environ Pollut ; 252(Pt A): 296-304, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158658

RESUMO

Natural attenuation of polychlorinated biphenyls (PCBs) by indigenous bacteria is an effective remediation strategy for polluted marine sediments. This study investigated the relationships between PCB concentrations in sediment pore water, humin electron transfer capacity, and potential PCB dechlorinators at eight sediment sampling sites in the southern Yellow Sea, China, with differential PCB contamination. Station A2 showed the highest PCB concentration (453.16 ng L-1 for seven indicator PCBs), especially of less chlorinated PCB congeners (≤5 Cl atoms), humin redox activity, and Dehalococcoides abundance (p < 0.05). Statistical analyses revealed a highly positive correlation between Dehalococcoides abundance and PCB concentration (r = 0.836, p < 0.05) and the electron shuttling ability of humins (r = 0.952, p < 0.01), whereas this was not observed for total bacteria and other potential PCB dechlorinators, e.g., Dehalobacter and Dehalogenimonas. Based on these results, Dehalococcoides might play an important role in the in situ reductive dechlorination of PCBs involving humins in marine sediments, and the natural microbial PCB attenuation capacity at station A2 was high. Chemical characterizations, electrochemical properties, and Fourier transform infrared analysis suggested that humins at station A2 had the highest electron transfer capacity. Furthermore, quinones are likely to be the functional groups that shuttle electrons during PCB dechlorination. Overall, this study provides a useful foundation for evaluating the natural microbial attenuation potential and fates of PCBs in marine sediments and for determining the role of humins as redox mediators in in situ PCB dechlorination by putative indigenous dechlorinators.


Assuntos
Biodegradação Ambiental , Chloroflexi/metabolismo , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Bifenilos Policlorados/análise , China , Chloroflexi/classificação , Poluentes Ambientais/análise , Halogenação , Oxirredução
19.
Appl Environ Microbiol ; 74(1): 52-60, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17965206

RESUMO

Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Água do Mar/microbiologia , Oceano Atlântico , Biodiversidade , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
FEMS Microbiol Lett ; 287(1): 108-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18684121

RESUMO

A Gram-negative, nonmotile, aerobic and oxidase- and catalase-positive bacterium, designated D25T, was isolated from the deep-sea sediments of the southern Okinawa Trough area. Phylogenetic analyses of 16S rRNA gene sequences showed that strain D25T fell within the genus Myroides, with 99.2%, 96.0% and 93.4% sequence similarities to the only three recognized species of Myroides. However, the DNA-DNA similarity value between strain D25T and its nearest neighbour Myroides odoratimimus JCM 7460T was only 49.9% (<70%). Several phenotypic properties could be used to distinguish strain D25T from other Myroides species. The main cellular fatty acids of strain D25T were iso-C15:0, iso-C17:1omega9c, iso-C17:03-OH and Summed Feature 3 (comprising C16:1omega7c and/or iso-C15:02-OH). The major respiratory quinone was MK-6. The DNA G+C content was 33.0 mol%. The results of the polyphasic taxonomy analysis suggested that strain D25T represents a novel species of the genus Myroides, for which the name Myroides profundi sp. nov. is proposed. The type strain is D25T (=CCTCC M 208030T=DSM 19823T).


Assuntos
Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação , Sedimentos Geológicos/microbiologia , DNA Bacteriano/genética , Flavobacteriaceae/química , Flavobacteriaceae/genética , Genótipo , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA